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Abstract 

Climate change may stress water supply systems due to both diminishing water resources 

and rising climate driven water use. Reducing the sensitivity of residential outdoor water use 

to climatic factors is desirable for climate change adaptation. Outdoor water use is also 

attractive for achieving water savings, because outdoor use is more elastic than indoor use. 

This study was aimed at estimating residential outdoor water use for the purpose of estimating 

how it would be impacted by climate change.  

A conceptual model was formulated to derive irrigation water use for vegetated areas around 

the home from climate variables. The model was based on the modification and adaptation of 

an existing residential end-use model for outdoor water demand to include climate change 

parameters. The resulting irrigation water end-use model is suitable for assessing water use 

for specific vegetation types maintained around the home. Application of the model to the case 

of leafy vegetables grown in the backyard garden was demonstrated in this study. The growth 

of vegetables in backyard gardens is often linked to nutritional food security in developing 

countries, stressing the importance of research to better understand the impacts of climate 

change on water use for garden irrigation.  

In this research study, outdoor water use events were studied using sound recorded at outdoor 

taps. The automatic detection algorithm applied to the recorded sound signals performed 

reasonably well with precision and recall rates of at least 80%. Diurnal water use patterns 

derived at the outdoor tap revealed time periods of peak water use.  

An exploratory analysis of water billing records for the city of Lilongwe showed that water use 

increased with plot size, similar to previously reported research in southern Africa. Summer 

peaking factors also increased with plot size. In a follow-up study, panel linear regression 

analysis was used to create an empirical relationship between household water use and the 

independent variables: plot size and theoretical irrigation requirements. Predictions for 

ensemble averages of temperature and rainfall projections for 2050 showed an increase of 

1.5% in annual water use under the low emissions scenario and 2.3% under the high 

emissions scenario.  

Finally, the performance of temperature and rainfall as independent variables in water use 

regression models was compared to the use of theoretical irrigation requirements. Empirical 

analysis of a residential water use dataset for 12 North American cities showed that the 

transformation of temperature and rainfall to irrigation requirements, using a suitable set of 

parameter values, improved the performance of the water use regression models. 
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The results of this study show that garden irrigation will increase due to climate change, but 

the increase is relatively small compared to the expected population growth and urbanisation 

in many parts of Africa. The impact of climate on expected water use was examined using 

simple and effective techniques that were employed at relatively low cost. Water utilities and 

planners could employ the methods and tools reported on here to better plan for the additional 

expected increase in outdoor water use resulting from climate change.  
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Chapter 1. Introduction 

1.1 Background and motivation 

Worldwide, utilities are faced with challenges to meet rising water demands due to population 

growth and urbanisation (Danilenko et al., 2010). Many cities need new and diversified water 

sources. New water sources are, however limited, often harder and expensive to develop. 

Apart from the development of new sources of water, effective water demand management at 

the household level can potentially play an important role in curbing present use and reducing 

the impact of future water shortages (Breyer et al. 2012).  

Additionally, climate change is a prominent threat that is likely to alter the dynamics of water 

supply systems in the future. The sub-Saharan region is expected to get hotter and drier over 

the coming decades. Temperatures could rise by about 3C by the end of the century 

(Kusangaya et al. 2014). There is a general risk of reduced flows from existing surface water 

sources as rising temperature and changing rainfall patterns alter catchment yield (Kusangaya 

et al. 2014). Many cities already experience water shortages during hot dry summer periods. 

Climate change may further strain water supply by increasing climate related residential water 

use such as garden irrigation. 

Periods of acute water supply shortages have traditionally been managed by introducing water 

use restrictions, primarily targeting outdoor water use (Atwood et al., 2007; Jacobs et al., 2007; 

Survis and Root, 2012). In the long term, water demand management measures need to 

reduce the responsiveness of residential water use to variations in climatic factors (Breyer and 

Chang, 2014). Unlike indoor water use, which remains relatively constant throughout the year, 

outdoor water use is highly variable even among customers within the same location. This 

high elasticity of outdoor water use (Mansur & Olmstead, 2012) makes it an attractive option 

for achieving water savings at the household level. The water savings potential could be 

significant, depending on the nature of outdoor water end uses.  

Knowing the amount of water used outdoors and understanding the nature of the outdoor 

water end uses are prerequisites for effective planning and implementation of the related 

conservation strategies. Models are useful for predicting water use and for estimating the 

effects of related factors on water usage. Models that relate water use to the underlying drivers 

are an effective decision support tool for planning and management of urban water supplies.  

End-use modelling is a more recent and effective approach to relate water use to factors at 

the household level (Jacobs and Haarrhoff, 2004; Blokker et al. 2009). The verification of end-
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use models requires collection of water usage data at the fixture level. The high temporal and 

spatial resolution of end-use data provide greater detail about water use at the home than 

aggregated water use records. End-use modelling can therefore allow greater flexibility in the 

representation of water use processes.  

Regression models are among the most popular for empirical analysis of water use in literature 

since they permit development of statistical relationships between water use and other factors 

available to the modeller. Cross-sectional analyses are usually performed on water use data 

that contains information about various factors of interest measured on the water users. Time 

series analysis are also commonly used when the water use dataset spans a sufficiently long 

period of time. Panel data regression techniques are more recent with a capability for analysis 

of data collected on multiple units and over multiple time periods. There are a few reported 

water use studies that show the suitability of panel data analysis on water consumption 

records.  

1.2 Problem statement 

Outdoor water end use modelling has generally received less attention compared to indoor 

water end-use modelling. One challenge in outdoor water end use modelling is the greater 

influence of the consumer behaviour of the water users which contrasts with the greater 

dependence of indoor usage on plumbing fixture type (White et al., 2004). The close 

association between outdoor water use with climatic factors entails the need for a substantially 

long outdoor water end use dataset that allows a study of water use variation during different 

seasons of the year.  

Generally high resolution smart water meters are used for collection of end-use data at 

household level and the extraction of water end-use events requires specialised software. The 

cost of equipment necessary for collecting residential end-use data is prohibitively high, often 

making application impractical in developing countries. Furthermore, available end-use 

datasets are mostly too short for comprehensive climate related modelling.  

The alternative application of regression analysis can easily allow the inclusion of climatic 

factors in various flexible ways. Many utilities have water use databases which span only a 

few years but comprise numerous customer accounts. Detailed customer related information, 

however, is not always available to the water managers of researchers. The choice of the 

statistical analysis technique for examining the impacts of climatic factors needs to consider 

these data related limitations.         
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1.3 Research aim and objectives 

The aim of the study was to develop tools for estimating outdoor water use in order to assess 

the impacts of climate change. The specific objectives of the research project were as follows: 

1. To conduct a review of key concepts related to the prediction of future climate  

2. To modify and adapt the outdoor demand component of the existing Residential End 

Use Model for the assessment of climate change impacts 

3. To assess the suitability of sound recording for the study of water use at outdoor 

fixtures (To undertake a field study of water use at outdoor fixtures by using sound 

recording and its suitability for application in end-use modelling)  

4. To carry out a study of the monthly variation of water use and its relationship to climatic 

factors in the study area 

5. To develop empirical relationships between water use and climatic factors and 

examine potential impacts of projected future climate change on water use.   

1.4 Research significance  

The outdoor water end-use model presented in this study has potential to improve 

representation of outdoor irrigation water use. A calibration method is demonstrated which 

may improve outdoor water end use modelling through the determination of suitable values 

for parameters that are normally difficult to measure in a practical manner at household level. 

Calibration is also necessary for tuning parameter values obtained from literature to describe 

characteristics of outdoor water using features but where the field conditions differ from the 

standard conditions.  

The application of sound recording at the outdoor tap considered in this research is a low-cost 

alternative technique that has potential to improve knowledge and understanding of the nature 

of outdoor water use especially in low-income regions. Although this research does not 

consider the estimation of flow rate from the recorded signals, there is potential to apply this 

technique with other approaches such as contingency valuation techniques to obtain data that 

is suitable for outdoor water end use modelling.  

The empirical analysis of customer monthly water use records presented in this research 

utilises data that is often routinely collected by public institution in most cities to examine the 

influence of climate related factors on residential water use. Most empirical studies reported 

in literature require additional information to be collected from customers depending on the 

statistical analysis techniques chosen and the factors under consideration. The goal in this 

research was to apply a methodology that can effectively be applied for climate change impact 
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assessments on water use in southern African cities with minimal additional financial 

requirements. If the underlying assumptions are satisfied, regression models can provide vital 

insights into water use from limited and readily accessible information.  

1.5 Delineations and limitations 

The models applied in this research focus on garden irrigation only. Swimming pools are 

known to significantly impact residential water use in other cities, Cape Town for example. 

Swimming pools were, however, not addressed in this work because they were not common 

in the study area. Outdoor water use includes other components besides garden irrigation 

such as car washing and cleaning of hard surfaces. These uses are less closely associated 

with climatic factors and are not considered in this study.  

Water end-use study are concerned with the determination of the intensity, duration, and time 

of occurrence of water use events in order to characterise the water use profile of plumbing 

fixtures. The analysis of sound signals recorded at the outdoor tap in this study focused only 

on the duration and time of occurrence of water use events at the outdoor tap. The 

determination of flow rate from the sound signals was beyond the scope of this study.  

Sound from pipe flow is dependent on the properties on the pipes and the plumbing 

configuration. None of these factors were explicitly addressed in the field study conducted to 

characterise outdoor tap water use events. Water pressure also impacts the intensity of flow 

sound. This research, however, did not consider the effects of pressure on the recorded sound 

signals.  

The outdoor water end-use model proposed in this research, referred to as the CIWU model, 

was not fully applied due to lack of a comprehensive water end-use dataset. The determination 

of outdoor water use profiles targeted only 10 homes due to resource constraints. As already 

stated above, the event data collected lacked flow rate measurements. Instead the concepts 

in the CIWU model were successfully demonstrated on a single home where a suitable dataset 

was available.  

1.6 Main Assumptions 

Outdoor water use was assumed to be predominantly driven by garden irrigation. This 

assumption is considered reasonable in the study area because other known major outdoor 

water end uses such as swimming pools were relatively uncommon.  
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There are also outdoor water uses which do not directly result from evapotranspiration losses 

such as car washing and cleaning of hard surfaces. These water end uses were assumed to 

be affected marginally by climatic factors and were not considered in all the analyses 

presented.  

It was assumed in this study that climatic factors mainly influence outdoor irrigation water use. 

Indoor water use was assumed to remain constant throughout the year irrespective of climatic 

factors.  

The empirical study of water use records employed panel data analyses. The application of 

panel data analysis to estimate the regression models presented were considered to have 

effectively accounted for potential bias due to omission of time-invariant factors among the 

customers. There was, however, potential bias due to factors that vary over the year, but these 

are assumed to have had minor effects on the results.  

1.7 Chapter overview 

This dissertation comprises 9 chapters. Chapter 1 provides a brief introduction highlighting 

issues related to residential outdoor water use. Chapters 2, 3, 5 and 6 are published papers 

and are formatted according to the requirements of the journals in which they were published 

whereas Chapters 7 is an unpublished paper which was formatted according to the journal to 

which it was being submitted at the time of compiling this manuscript.  

Chapter 2 presents a brief review of water end-use modelling, and a review of global climate 

modelling including the prediction and downscaling of predicted climate to local scale. A 

theoretical framework for estimating residential irrigation water use is presented allowing for 

the assessment of the impacts of changes in climatic factors. Chapter 2 also presents a 

theoretical framework for estimation of domestic irrigation water use and the application of 

predicted future climate condition to assess the impacts of climate change.  

Chapter 3 presents a study of water use at the outdoor tap using sound recording. The 

suitability of sound recording for collecting outdoor water end-use data was examined by 

applying both manual and automated event extraction techniques.  

Chapter 4 describes the application of the irrigation water end use model presented in Chapter 

2 to a dataset collected for leafy vegetables. The dataset used was collected as part of the 

field work reported in the study in Chapter 3. An exhaustive search applied to identify 

parameters of best fit was described.  
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Chapter 5 presents research into the monthly variation in residential water use for the city of 

Lilongwe in relation to plot size. The average annual daily demand was compared to findings 

from similar studies in southern Africa. In Chapter 6 plot size and theoretical irrigation 

requirements, computed from weather data, were used to estimate a panel linear regression 

model for predicting monthly water use. The procedure for the computation of irrigation 

requirements was adopted from the outdoor water end-use model presented in Chapter 2. 

The fitted model was used to assess the impact of predicted future climate on water use for 

the city of Lilongwe.  

In Chapter 7, the performance of water use models regressed on the derived variable 

theoretical irrigation requirements was further examined for a range of climatic environments. 

The outcomes were compared to the alternative use of the variables temperature and rainfall. 

Chapter 8 links the findings of the independent papers in a general discussion and addresses 

limitations of the research. Chapter 9 presents the conclusions based on the research findings, 

summarises contributions and makes recommendations for future research.  
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A conceptual theoretical framework to integrally assess the possible 
impacts of climate change on domestic irrigation water use 
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ABSTRACT 

Southern Africa is likely to experience higher evapotranspiration and altered rainfall 

characteristics due to global warming and climate change. Climate-driven water use may 

potentially stress water supply facilities due to increased demand and reduced surface water 

yield. This paper presents a conceptual theoretical framework for assessing impacts of climate 

change on domestic irrigation water use. The prediction of climatic conditions that may 

potentially influence future water use is reviewed together with regional capacity for 

downscaling global climate projections. The impact assessment of water use is based on the 

modification and adaptation of an existing end-use model for water demand to include 

parameters for climate change. The Penman-Monteith equation and the soil water balance 

equation are incorporated for the estimation of daily water needs of vegetated areas in 

residential properties. The paper also discusses data requirements and a calibration 

procedure to improve model fit to the observed domestic irrigation water use. The proposed 

approach could form a basis for constructing a detailed model for planning various adaption 

measures relating to climate-driven domestic irrigation water use. 

Keywords: climate change, outdoor water use, end-use model, irrigation water use  
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INTRODUCTION 

Research context 

Domestic water use comprises indoor and outdoor components. Water is needed outdoors 

mainly for garden irrigation – to water vegetation such as lawns, flowerbeds and trees. Other 

outdoor water uses include pool top-ups, washing of cars, washing of hard surfaces, etc.. 

Water may also be used for small-scale urban agriculture – to grow edible plants like herbs, 

fruit and vegetables. Various climatic parameters impact outdoor water use, including, for 

example, rainfall, evapotranspiration and ambient temperature (Balling et al., 2008; 

Praskievicz and Chang, 2009; Breyer and Chang, 2014). This climatically-driven water use 

profile is particularly true for edible plants with seasonal growth.  

Climate change has been reported to affect parameters requisite for estimating irrigation 

requirements (Gutzler and Nims, 2005; Balling and Cubaque, 2009), and may thus have 

important implications for modelling residential outdoor water use. To study the impacts of 

climate change on residential outdoor water use, it is vital to incorporate biophysical inter-

relationships pertinent to outdoor water using features. In this regard, water end-use models 

are more likely to produce better results compared to models that are built on aggregated 

water use measurements (Bennett et al., 2013). Research is still needed to estimate the 

impact of climate change on water use at the end-use level, thereby augmenting other existing 

broad-scale efforts aimed at assessing the current and future capacity of water resources to 

meet domestic, agricultural and environmental water requirements.  

Objectives 

The main objective of this paper is to present a conceptual theoretical framework for a Climate 

Impact Water Use (CIWU) model that would integrate climate change impacts into a residential 

end-use model for estimating domestic irrigation water use. The goal is to present a framework 

or tool that could ultimately feed into a more complex model in future to predict long-term 

impacts of climate change on outdoor water use. In this paper, the focus is on lawn and garden 

irrigation which, when present on a residential property, contributes significantly to water use 

(Jacobs et al., 2007). 

Pricing, technological change and other socio-economic factors have also been reported to 

influence water use (Howe and Lineweaver, 1967; Butler and Memon, 2006). While such 

factors may change over time and thereby impact domestic irrigation water use, they have 

been disregarded in the modelling framework presented. Instead, the proposed end-use 

model allows for the analysis of the impact of predicted changes in climatic parameters on 
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domestic irrigation water use of a specific residential property in a 'static environment' wherein 

non-climatic parameters remain constant.  

Motivation 

On a global scale, impacts of climate change on the water cycle are mainly manifested in the 

increased intensity and frequency of extreme events (Rana et al., 2014; Niang et al., 2014). 

The Mediterranean and southern Africa regions are generally expected to experience a 

significant decline in water resources due to global warming (IPCC, 2007; Niang et al., 2014). 

Thus, sustainable management of water resources and implementation of action plans to deal 

with possible water shortages require a good understanding of water end-uses and their 

response to climate change. 

Water supply utilities are already facing pressure to maintain supply in the face of increasing 

water use and uncertain supply (Danilenko et al., 2010). Outdoor water use restrictions have 

already been applied extensively in many cities to manage water supply shocks (Atwood et 

al., 2007; Jacobs et al., 2007; Survis and Root, 2012). Any future increase in domestic 

irrigation water requirements that may be brought about by climate change could potentially 

further stress water resources due to increased water use, possibly combined with reduced 

surface water yield (Kusangaya et al., 2014). Accurate modelling of water use in the context 

of climate change is essential to effectively plan and implement future water management 

strategies. 

STATE-OF-THE-ART CONCEPTS IN CLIMATE CHANGE AND WATER END-USE 
MODELLING 

Climate change  

Global warming due to increasing concentrations of greenhouse gases (GHG) in the 

atmosphere is expected to cause significant changes in future climate. According to the IPCC 

(2013), global temperatures will continue to rise given the present levels of anthropogenic 

GHG emissions. The direct effect of higher temperatures is increased atmospheric water 

demand and the intensification of the hydrological cycle. The intensification of extreme events 

is expected even in areas that are bound to experience decreased rainfall due to global 

warming, such as the Mediterranean Basin and some parts of southern Africa (Niang et al., 

2014). 

Global circulation models (GCMs) are widely used to generate forecasts of future climate 

(Dufresne, 2006; Rana, 2014; Servat, 2014; André, 2014). Prediction of future climate is a 
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complex undertaking involving many physical, chemical and biological processes. Confidence 

in the application of GCMs has been growing with improved computing capabilities that have 

made it possible to perform numerically-intensive simulations within reasonable lengths of 

time. There are now a large number of GCMs available from different institutions around the 

world. The results of the IPCC fifth assessment, made public for potential use by the scientific 

research community, are based on the analysis of 27 GCMs (IPCC, 2007; IPCC, 2013). It has 

now become the norm to assess future climate conditions from an ensemble of GCMs in order 

to reduce regional and seasonal bias exhibited by individual models (Graham et al., 2011; 

Faramarzi et al., 2013). Table 2.1 provides an inventory of 16 of the most sophisticated GCMs 

amongst the 27 GCMs used by IPCC. 
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Table 2.1 Characteristics of 16 GCMs 

GCM name Institution 
Country of 

origin 

ID according to 

CMIP3 

BCC_BCM2.0 Bjerkness Centre for Climate Research Norway BCM2.0 

CCCMA_CGCM3.1 Canadian Center for Climate Modelling 

and Analysis 

Canada CGCM3.1(T47)2 

CNRM_CM3 Météo-France / Centre National de 

Recherches Météorologiques 

France CNRM-CM3 

CSIRO_MK3.5 Australia's Commonwealth Scientific and 

Industrial Research Organisation 

Australia CSIRO_MK3.5 

GFDL_CMD2.0 US Dept. of 

Commerce/NOAA/Geophysical Fluid 

Dynamics Laboratory 

USA GFDLCM2.04 

GFDL_CMD2.1 US Dept. of 

Commerce/NOAA/Geophysical Fluid 

Dynamics Laboratory 

USA GISS-ER6 

GISS_MODE_E_R NASA/Goddard Institute for Space 

Studies 

USA e for Spa 

INGV_ECHAM4 INGV, National Institute of Geophysics 

and Volcanology 

Italia ECHAM4.6 

INMCM3.0 Institute for Numerical Mathematics Russia INMCM3.0 

IPSL_CMD4 Institut Pierre Simon Laplace France IPSLCM4 

MIROC3.2_MEDRES CCSR/National Institute for 

Environmental Studies/FRCGC 

Japan MIROC3.2 

MIUB_ECHO_G Meteorological Institute of the University 

of Bonn, Meteorological Research 

Institute of KMA, Model and Data group 

at MPI-M 

Germany/ 

Korea 

ECHO-G1 

MPI_ECHAM5 Max Planck Institute for Meteorology Germany ECHAM5/MPI-

OM 

MRI_CGCM2.3.2a Meteorological Research Institute Japan MRICGCM2.3.2 

UKMO_HadCM3 Hadley Centre for Climate Prediction, 

Met Office 

UK UKMOHadCM3 

UKMO_HadGEM1 Hadley Centre for Climate Prediction, 

Met Office 

UK UKMOHadGEM1 
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Versatile as they are, GCMs can only give valid outputs at grid scales that are essentially too 

coarse for most impact studies, particularly when the focus is on water use of relatively small 

residential neighbourhoods. Working at grid sizes larger than around 350 km2 to 450 km2, 

GCMs fail to capture the spatial and temporal patterns of second-order processes, for 

example, rainfall, with the same level of consistency as first-order atmospheric processes 

(Hardy, 2003). Regional downscaling is required to bring the GCM outputs to grid scales of 

about 10 km2 to 50 km2. Two basic approaches are available for downscaling. The first 

approach, known as dynamical downscaling, links a regional climate model (RCM) of smaller 

grid size to the relevant GCM. RCMs are based on similar theoretical foundations to those 

used in GCMs and offer results with finer spatial resolution (Rana et al., 2014). However, the 

scope of RCMs is limited to their regions of validity. Alternatively, statistical downscaling can 

be used to transfer GCM projections to the area of interest by coupling the regional and local 

climate through available observations. Statistical downscaling has much fewer computational 

requirements than dynamical downscaling but the final results will inherit any anomalies in the 

available data (Graham et al., 2011). According to Maraun et al. (2010), consensus between 

results from dynamical downscaling and statistical downscaling is a better indicator of validity 

of the results. 

A key issue when using future climate projections is quantifying the uncertainty inherent in the 

successive stages of modelling. Some climate processes are not yet well understood in terms 

of climate modelling. Thus, errors can be introduced into the results leading to an over- or 

underestimation of future climate (Schulze, 2011). The anthropogenic GHG emission 

scenarios used in GCMs are based on assumptions of highly unpredictable socio-economic 

and technological statuses of the future. The GCMs themselves comprise parameterisations 

that oversimplify processes of many local climate phenomena they represent. Hence it is 

desirable to introduce as little additional uncertainty as possible in the downscaling or sequent 

modelling stages.  

In the African context, climate change simulations are usually carried out by using GCMs 

suggested by the IPCC. The severe lack of observed climate data and credible studies 

conducted on spatial and temporal variation of climate across Africa preclude an accurate 

assessment of future regional climate scenarios of most African regions (Gbesso et al., 2014; 

Kling et al., 2014; Rana et al., 2014). Projections of extreme weather conditions, as of the 

IPCC report published in 2001, were not available for wide portions of Africa due to inadequacy 

of data (DFID, 2004). The case in South Africa, however, seems to be different from the rest 

of the continent. South Africa seems to have more active participation in global climate change 

programmes and a wealthier literature resource of work on climate change than the rest of the 
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continent (Ziervogel et al., 2014). International efforts are underway to develop regional 

climate models, especially for the southern African part. The UK Department for International 

Development (DFID) had supported the development of a regional climate model called 

ACCURATE from the Hadley Centre (DFID, 2004). CORDEX-Africa is yet another joint 

programme meant to increase the availability and quality of downscaled climate projections 

for Africa. In addition, South Africa has implemented strategic actions to better understand the 

implications of climate change at national level. The Climate Systems Analysis Group (CSAG) 

affiliated to the University of Cape Town has generated future climate scenarios on a daily 

scale for national and local application using five GMCs, namely, CGCM3.1, CNRM-CM3, 

ECHAM5/MPI-OM, GISS-ER and IPSL-CM4 (Schultze, 2011). 

Residential water end-use modelling methods 

Reliable water use estimates are the basis for most decisions water utilities and practitioners 

have to make concerning the design, operation and management of water distribution systems 

(Donkor et al., 2012). If water use estimates are obtained precisely at the spatial scale of 

individual residential properties, a marked improvement is evident in the performance of 

various aspects of the corresponding water supply network models (Xu and Goulter, 1998; 

Alvisi et al., 2014). End-use modelling has been recognised to be the key to enhancing the 

spatial and temporal resolution of water use estimates entered as inputs at demand nodes in 

water supply network models. Flow rates and pressure variation in the distribution system can 

then be determined more precisely leading to better design of hydraulic components (Garcia 

et al., 2004). In addition, contaminant and disinfectant travel times can be determined more 

accurately in network water quality models (Blokker et al., 2008). Water conservation studies 

have also demonstrated the potential of end-use models to achieve future water savings 

through effective implementation of bottom-up water demand management measures as a 

supplement to the usual top-down approaches (Macy, 1999; Mayer et al., 2003; Willis et al., 

2009). 

Several residential water end-use models have been proposed (Buchberger and Wu, 1995; 

Alvisi et al., 2003; Jacobs and Haarhoff, 2004; Garcia et al., 2004; Blokker et al., 2009; Bennett 

et al., 2013) since the development of technologies for effectively disaggregating metered 

consumption into water end uses at individual plumbing fixtures. Buchberger and Wells (1996) 

first showed that water use events at a residential stand can be represented by rectangular 

pulses characterised by their intensity, duration and frequency. Subsequently, models for 

simulating residential water use estimates were based on regenerating the patterns of 

occurrence of the pulses observed at the residential stand connection in probabilistic functions 
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(Buchberger and Wu, 1995; Alvisi et al., 2003; Garcia et al., 2004; Blokker et al., 2009; Alvisi 

et al., 2014). Although the earlier stochastic end-use models, once calibrated, reproduce the 

water use events reasonably well, they do not hypothetically relate the simulated water usage 

to the inherent characteristics of the residential stand concerned. Consequently, extrapolating 

the simulation models in time or transferring the models to other locations demands 

recalibration of the model parameters using a new set of end-use data.  

The residential end-use model (REUM), however, was developed to estimate water use from 

parameters that define characteristics of the respective water-using fixtures (Jacobs and 

Haarrhoff, 2004). Multiple facets of residential water use were addressed in REUM, namely, 

indoor water use, outdoor water use, hot water use and wastewater flow. REUM was 

formulated to produce monthly averaged outputs from inputs of typical parameter values. 

Scheepers and Jacobs (2014) later increased the indoor model complexity by describing all 

indoor parameters stochastically and modifying this model component to output hourly water-

use estimates.  

The cost associated with collecting and processing end-use data is perhaps the major 

challenge to the application of stochastic water end-use models. Blokker et al. (2009) 

demonstrated in the Simulation of Demand and End-Use Model (SIMDEUM) that water use 

events can alternatively be generated from parameters derived from household characteristics 

of the residential stands. The advantage of SIMDEUM is that it avoids expensive data-logging 

exercises by utilizing household characteristics as model inputs derived primarily from 

household survey data. SIMDEUM, however, does not consider parameters for outdoor water 

use and may therefore not perform equally well where outdoor water use features are 

dominant. Generally, the more versatile residential water end-use models remain confined to 

indoor water end uses. 

The outdoor water use model proposed by Jacobs and Haarhoff (2004) estimated outdoor 

water consumption from pan evaporation and rainfall. A similar formulation was adopted by 

DeOreo et al. (2011) for estimating outdoor water use in an end-use study in California. Later 

work by Du Plessis and Jacobs (2014) applied the outdoor demand component of REUM to 

residential estates in South Africa. Unlike the original model, Du Plessis and Jacobs (2014) 

used separate parameters to model evapotranspiration from plant surfaces and evaporation 

from open water surfaces. In each case, outdoor water use was assumed to essentially result 

from replenishing of water lost from evaporating surfaces. Outdoor consumption was deduced 

from monthly averaged pan evaporation and effective rainfall data but temperature, which is 

an important component in climate projections, was not included. Pan evaporation is also 
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known to be sensitive to local conditions and requires application of carefully chosen pan 

coefficients (Sumner and Jacobs, 2005). 

The estimation of outdoor water use is a fundamental issue in modelling residential water 

demand in southern Africa. One factor that makes outdoor water demand modelling 

problematic is the large variation observed between seasons and geographical locations. 

Correlating water use estimates and measured consumption is further complicated by 

uncertain behavioural responses of consumers to landscape water needs (Du Plessis and 

Jacobs, 2014). Considerable variability in outdoor consumption often occurs amongst 

residential stands of similar characteristics (Jacobs and Fair, 2012). Nevertheless, there is a 

close association between residential water use and stand area (Jacobs et al., 2004; Van Zyl 

et al., 2008; Griffioen and Van Zyl, 2014). 

ADAPTED DOMESTIC IRRIGATION WATER END-USE MODEL  

Model development 

The concept of the proposed CIWU model builds on the REUM outdoor demand model 

(Jacobs and Haarhoff, 2004) and extends the underlying concepts to include basic weather 

variables for the study of the impact of climate change on domestic irrigation water use. A set 

of equations for evapotranspiration and soil water balance were built into CIWU and used to 

model domestic irrigation water requirements on a daily time-step, in a similar manner to crop 

water use modelling in case studies by Kuo and Liu (2003) and Smith et al. (2012). A 

calibration scheme using end-use data is suggested for adjusting model parameters to attain 

best fit to the observed water use while fine-tuning the model to show good agreement with 

the incidence of irrigation water use events. Notable climate-driven outdoor water uses are 

pool filling, lawn irrigation and garden irrigation. Other residential water uses located outdoors 

may also be indirectly influenced by climatic factors and therefore portray seasonal patterns, 

for example, pool top-ups, car washing etc. The focus in the CIWU model, however, is on 

domestic irrigation water use. Therefore, the other outdoor water end uses have not been 

included in the conceptual model presented. The resulting calibrated model is expected to 

give satisfactory outdoor water use estimates in areas where lawn and garden irrigation are 

predominant. 

Estimation of daily domestic irrigation water needs 

Modelling of domestic irrigation water use relies on conceptualizing atmospheric water 

demand and soil-plant-water interrelationships. Water applied to the landscape is normally 

lost into the atmosphere through evapotranspiration from the soil and plant surfaces. 
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Atmospheric water demand is defined as water loss from a hypothetical crop growing in non-

limiting conditions, conventionally referred to as reference crop evapotranspiration (Allen et 

al., 1998). Several methods exist for estimating reference crop evapotranspiration, each with 

unique advantages. The Hargreaves method, for example, models reference crop 

evapotranspiration accurately enough in certain regions from temperature data alone (Jensen 

et al., 1997). The Penman-Monteith method is chosen here because it has been shown to 

perform more consistently in different geographical regions than other methods (Sumner and 

Jacobs, 2005; Benli et al., 2010). According to Allen et al. (1998), reference crop 

evapotranspiration is given by:  

𝐸𝑇௢ =
଴.ସ଴଼∆(ோ೙ିீ)ାఊ

వబబ

೅శమళయ
௨మ(௘ೞି௘ೌ)

∆ାఊ(ଵା଴.ଷସ మ)
 (1) 

where: 

ETo is the reference evapotranspiration (mm/d) 

Rn is the net radiation at the crop surface (MJ/m2∙d) 

G is the soil heat flux density (MJ/m2∙d) 

T is the mean daily air temperature at 2 m height (°C) 

u2 is the wind speed at 2 m height (m/s) 

es is the saturation vapour pressure (kPa) 

ea is the actual vapour pressure (kPa) 

∆ is the slope of the saturation vapour pressure curve at temperature T (kPa/°C) 

is the psychrometric constant (kPa/°C) 

Crop evapotranspiration, ETc, is related to daily reference crop evapotranspiration by 

𝐸𝑇௖ = 𝐾௖ × 𝐾௦ × 𝐸𝑇௢ (2) 

where:  

Kc is a crop coefficient 

Ks is a reduction factor dependent on amount of water left in the soil 

Some garden plants are seasonal and their crop coefficients vary within the year. The crop 

coefficient at each growth stage can be expressed as follows (Allen et al., 1998): 
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𝐾௖ ௜ = 𝐾௖ ௣௥௘௩ + ൤
௜ି∑ ௅೛ೝ೐ೡ

௅ೞ೟ೌ೒೐
൨ ൫𝐾௖ ௡௘௫௧ − 𝐾௖ ௣௥௘௩൯ (3) 

where: 

i is the day number within the growing season 

Kc i is the crop coefficient on day i 

Lstage is the length of the stage under consideration 

∑(Lstage) is the sum of the lengths of all previous stages 

The reduction factor, Ks, is given by: 

𝐾௦ = ൝
1                     ,       (𝑇𝐴𝑊 − 𝐷௥) ≥ (1 − 𝑝) ∙ 𝑇𝐴𝑊
்஺ௐି஽ೝ

(ଵି௣)∙்஺ௐ
        ,         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                     

 (4) 

where: 

Ks is the reduction factor dependent on available soil water 

Dr is the root zone depletion in mm 

TAW is the total available soil moisture in the root zone in mm 

p is the fraction of TAW that a crop can extract from the root zone without suffering water 

stress. 

Incorporating the soil water balance equation 

Hypothetically, irrigation takes place to refill the root zone when a given fraction of the available 

water, p, has been depleted. The amount of water applied at a given event is assumed to be 

equal to the depth necessary to bring the soil moisture to field capacity. For a plant with an 

effective root zone, Zr (measured in mm), the total available water (TAW) at field capacity is:   

𝑇𝐴𝑊 = 1000(𝜃ி஼ − 𝜃௉ௐ௉)𝑍௥  (5) 

where: 

θFC is the moisture content at field capacity  

θPWP is the moisture content at permanent wilting point 

The water stored in the soil at any time is tracked by maintaining a soil-water balance at a 

daily time-step (Kuo and Liu, 2003; Davis and Dukes, 2010) instead of monthly averages used 

in REUM. Groundwater contribution and effective rainfall are the two inputs of the water 

balance equation that are particularly difficult to measure or estimate. Since the water table is 

usually below 1 m in residential neighbourhoods, its effect on the root zone will be negligible. 

At a daily time-step, it is reasonable to assume that effective rainfall is limited to the amount 
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that fills up the root zone (Davis and Dukes, 2010). Any rainfall in excess of this amount is 

assumed to be lost as runoff or deep percolation. The irrigation water use is given by the 

following simplified form of the soil-water balance equation:  

𝐼𝑅௘,௝ = 𝑤௘,௝ିଵ − 𝑤௘,௝ + 𝐸𝑇௖ ௘,௝ − 𝑟௝ (6) 

where:  

IR is the net irrigation requirement 

ETc is the crop evapotranspiration 

r is effective rainfall 

w is soil moisture depletion in the soil at a given time 

subscripts e and j denote end use and day of the year, respectively 

The landscape is assumed to be divided into areas comprising plants of similar water use 

characteristics. Once suitable parameter values have been estimated for each type of feature, 

the landscape water use can be computed from the daily water requirement of each peculiar 

plant area. For any given period, n, the outdoor water use, is calculated from the summation 

of values of the irrigation requirement, IR, obtained at each time-step. Unlike monthly averaged 

water use estimates in REUM (Jacobs and Haarhoff, 2004), the monthly domestic irrigation 

usage is derived from the summation of the daily irrigation requirements as: 

𝑀𝐼𝑅௠ = ∑ ቀ(𝑓௘ × 𝜀௘ × 𝑠௘) ∑ 𝐼𝑅௘,௜
ௗାௗ೘೚೙೟೓
௜ୀௗ ቁ௡

௘ୀଵ  (7) 

where: 

MIR is the estimated monthly outdoor water use 

ε represents the efficiency of the irrigation system 

f relates to over-irrigation and under-irrigation 

s is the surface area of the vegetation type 

IR is the irrigation requirement  

d is the number of days in the month 

n is the number of types of vegetated surfaces 

subscripts m and e denotes month and outdoor end use respectively. 

Data requirements 

As outdoor water use is estimated from outdoor water-using features, the presence and 

characteristics of the various features need to be determined as accurately as possible for the 

location of interest. End-use models typically have huge data requirements at their 
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development stages. Populating parameters for each determinant of the domestic irrigation 

water use model requires, at minimum, data that describes the weather, the characteristics of 

landscape features and calendars of seasonal garden activities.  

Weather data plays a central role in simulating atmospheric water demand. In some regions, 

acquiring weather data may not be a straightforward task. The model may not be effectively 

applied in regions where weather data of satisfactory quality is not available. The common 

issues are sparse networks of weather stations, or stations reporting only a subset of the 

desired weather variables or in some cases extended periods of missing values. The 

increased availability of automated weather stations, most of which are capable of continuous 

and remote data acquisition, is expected to help overcome these challenges.  

Data required to populate parameters that characterise vegetated surfaces, including the 

cropping patterns of seasonal plants, can be sourced through household surveys, fixture 

audits and the use of geographical information systems (GIS). A number of case studies have 

demonstrated that landscape features can be demarcated, characterised and measured using 

aerial photographs or high-resolution satellite images (Mayer et al., 1999; Du Plessis and 

Jacobs, 2014; Hof and Wolf, 2014). DeOreo et al. (2011) have shown that the latter approach 

yields better results than measurements provided by survey respondents. For effective model 

calibration, a corresponding data set of actual irrigation water use is necessary.  

Model calibration 

Calibration is necessary to ensure that the irrigation water use model reproduces observed 

values reasonably well under the given climatic conditions. Some of the model biophysical 

parameters cannot be determined directly without elaborate laboratory analyses or 

experimentation. Soil properties in particular can be expensive and time consuming to 

measure. Even if the measurements were carried out, it is unlikely that the scale would be 

representative of the heterogeneity of the landscapes in all the neighbourhoods concerned 

(Wagener and Wheater, 2006). In addition, suitable over- and under-irrigation factors need to 

be identified considering the end users would not apply the exact amounts of water required 

by the plants. Reliable over-irrigation or under-irrigation factors are particularly challenging to 

determine because of uncertainty in human behaviour.  The root zone depletion levels also 

need to correspond with the end-user water application intervals. Similar challenges in 

parameter estimation are addressed through calibration in other water-related applications. 

Numerous case studies that utilise parametric calibration have been published in water 

distribution network modelling (Madsen, 2000; Van Vuuren, 2002; Van Dijk et al., 2008), 

rainfall-runoff modelling (Ndiritu and Daniell, 1999) of watersheds, etc. The calibration process 
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involves the systematic adjustment of parameter values to achieve good agreement between 

model outputs and the observed values. The parameter values have to be maintained within 

their acceptable ranges, based on physical and mathematical constraints, while the model 

performance is evaluated by an objective function until an optimum is reached. A common 

optimisation scheme is to minimise the sum of squares of deviations between simulated water 

use and observed consumption.  

If end-use data is available, optimisation can focus on multiple facets of the observed outdoor 

water end uses. One such strategy would be to minimise the sums of squares of the total 

volumetric water use as well as the observed frequencies of water application events. The 

benefit realised from using the second objective function is that the final model will generate 

water application events that reflect the frequency of water application of the consumers. The 

use of multiple objectives on the other hand leads to computational complexity. The solution 

may not be a straightforward set of parameters but pareto-optimal solutions encapsulating the 

entire range of the feasible parameter values (Madsen, 2000). Solving the optimisation 

problem requires choice of an appropriate algorithm. The two broad classes are local and 

global optimisation algorithms (Duan et al., 1992). Global optimisation algorithms have the 

advantage of avoiding local minima by examining the entire search space to arrive at a global 

minima or maxima. Genetic algorithms are quite popular for solving global optimisation 

problems because of their simplicity, which nonetheless comes at the expense of processing 

time and computing resources (Koppel and Vassiljev, 2009). 

INTEGRATING CLIMATE CHANGE IMPACTS INTO THE DOMESTIC IRRIGATION 
WATER-USE MODEL 

The irrigation water end-use model, once properly calibrated to suit a given location, provides 

the means to assess potential impacts of future climatic conditions on irrigation water use in 

that location. Figure 2.1 shows a schematic of the CIWU modelling framework. Potential future 

water use is evaluated by inputting weather data sets generated from projections of climate 

models for a selected climate change scenario. It is then possible to make comparisons of the 

prevalent water use with the projected usage for selected future climate scenarios. The 

sensitivity of irrigation water use to geographical characteristics implies downscaling to smaller 

spatial scales applicable to cities.  

The proposed CIWU model is a potential tool for planning of various adaptation measures 

under climate change relating to domestic irrigation water use. Several options for managing 

domestic irrigation water use are viable. The choice of the actual measures to implement 

would consider the savings attained by checking water use estimates predicted by the model 
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as an appropriate variable is adjusted over its feasible range. For example, xeriscaping can 

be reflected in the model by reducing the size of irrigated areas in the model. Introduction of 

irrigation equipment that reduces water losses means a higher value of irrigation efficiency 

becomes applicable in the model. A smaller crop coefficient would be used to represent a 

change to drought-tolerant landscaping plants.  

CONCLUSIONS 

This paper has discussed an integrated modelling approach for assessing impacts of climate 

change on domestic irrigation water use. Modifications to REUM outdoor water demand model 

associated with climatic parameters have been presented. The Penman-Monteith equation 

has been introduced into REUM for calculating potential evapotranspiration in the place of pan 

evaporation. The modified model is formulated to simulate water use at daily time-steps by 

maintaining a soil-moisture balance of the root zone. Weather data and information on 

landscape characteristics are the required inputs, whereas measured irrigation water use data 

is necessary for calibration. Calibration is required to select optimal values of some biophysical 

parameters which cannot be measured directly in a practical manner. Coupled with future 

climate projections from GCMs and relevant GHG emission scenarios, the proposed CIWU 

model can allow the quantification of uncertainty in the simulation of future domestic irrigation 

water use. The theoretical framework presented provides a potential tool for planning of 

various adaptation measures relating to climate-driven domestic irrigation water use. 
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Figure 2.1 Schematic of CIWU modelling approach 
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ABSTRACT 

Obtaining disaggregated water use at the home typically involves expensive smart metering. 

In this study, water use events at the outdoor tap were alternatively captured using recorded 

sound. Outdoor taps at 10 homes were fitted with small-sized microphones and digital sound 

recorders. Sound files recorded over a 1-month period were used in the analysis. In the 

preliminary analysis, a human operator browsed through the sound recordings, picking out tap 

use events based on visually recognizable waveform and spectrogram features, then audibly 

verifying each event identified before labeling. The performance of the corresponding 

automatic detection algorithm was reasonable, showing that water use events can be detected 

at precision and recall rates of at least 80% under suitable conditions. The results also showed 

that the technique is less suitable where the drop in pressure during peak demand periods 

results in significant reduction in the tap flowrate. Indirect flow sensing approaches are 

attractive for investigating water use event timing, because of the relatively lower cost when 

compared to conventional or smart water meters. Plumbing changes are not required as the 

recorder can be mounted on any exposed pipe section near the fixture of interest. 

Key words | outdoor tap, sound, water use 

INTRODUCTION 

Assessing climate-related impacts on residential water use hinges to a large extent on the 

correct determination of outdoor water usage. Residential water end-use studies have further 

shown that disaggregated water use data unveils patterns of fixture usage that are hardly 

noticeable in aggregated water consumption records. Detailed knowledge of the usage of 
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specific types of fixtures in the home improves the planning and evaluation of the relevant 

water conservation measures (DeOreo et al. 1996). A typical approach to obtain 

disaggregated water use data involves smart metering and flow trace analysis. The costs 

associated with smart metering are relatively high, so that the related studies have largely 

been confined to developed regions. Survey techniques such as questionnaires or diaries are 

cheaper but the accuracy of the results is often limited. 

A number of studies have proposed indirect approaches for sensing water usage in the home 

at the fixture level. Human activity recognition, mediated by the home plumbing system, has 

been the main interest in most of the reported research. Chen et al. (2005), for example, 

examined the use of microphones to monitor the activities of patients in the bathroom. In 

similar work, Forgarty et al. (2006) mounted a microphone on the main supply pipe to sense 

flow every time water was used in the study home. The profile of fixture usage was then 

obtained by applying a pattern recognition computer algorithm. Other reported applications of 

microphone based flow sensing include oil and gas monitoring by Lapinski et al. (2007) and 

the monitoring of field sprayers by Zhang (2014). Froehlich et al. (2009) instead logged fixture 

use by a pressure sensor connected to the home plumbing system through any accessible 

valve. Kim et al. (2012) later tested the use of accelerometers, installed on pipework leading 

to water use fixtures in the home, to infer in real-time the fixture in use and estimate the 

flowrate from the measured pipe vibrations. Indirect flow sensing approaches are attractive 

because of the relatively lower total installation cost. Unlike inline mechanical flowmeters, 

accelerometers or microphone sensors do not require plumbing changes since they can be 

easily mounted on any exposed pipe section of the fixture of interest. Unfortunately, event 

volume cannot be reported as accurately as with smart metering technology. 

The aim of the field study reported in this paper was to test the suitability of sound recording 

for capturing residential outdoor tap use events. The paper presents the microphone and 

sound recorder setup, the steps taken to abstract water use events from the sound recordings, 

and the results from the application of an automatic detection algorithm. The use of 

microphones was preferable to accelerometers because the recorded tap flow sound could 

be audibly verified during analysis. Precautions had to be taken, though, to avoid capturing 

sounds that would lead to privacy intrusion. The findings in this study demonstrate the potential 

for using recorded sound as a low-cost option for obtaining frequencies and durations of 

disaggregated water use events at the outdoor tap. 
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RESEARCH METHODOLOGY 

Recorder choice and setup 

Sound was captured at the outdoor tap using Sony ICD-PX333 recorders. The Sony ICD-

PX333 model was chosen following a review of a number of digital sound recorders available 

at the time of the study. The selected sound recorder model had the capability to record 

continuously by automatically creating new files when the current recording reached the file 

size limit. The internal 4-gigabyte memory lasted approximately 6 weeks when recording at 8 

kilobytes per second (kbps) in MPEG layer 3 (MP3) format. The 8 kbps recording setting was 

chosen because of the significant saving on computer storage space despite being the lowest 

recording quality for the ICD-PX333 model. The recorders were connected to an external pack 

of two D-type alkaline batteries instead of the usual AAA batteries in order to extend the battery 

life to match the total recording time of the ICD-PX333 recorder. 

Study period and selection of study homes 

The study was first conducted from December 2014 to January 2015 and later repeated from 

May 2015 to July 2015. The first study period captured the last few weeks of summer and 

extended into the rainy season while the second period fell in the cool dry season. Study 

homes were located in three neighborhoods in the City of Lilongwe, Malawi. In the first period 

of the study, 10 students from the Lilongwe University of Agriculture and Natural Resources 

(LUANAR) agreed to have the sound recorders installed at their homes. Most shortcomings 

in the recorder installation and setup procedure were discovered and addressed during the 

first study period. 

Only three homes were carried over from the first to the second study period. The other seven 

homes were dropped either due to limited outdoor water use or not having replanted their 

backyard garden with new crops at the time the study was repeated. The seven homes were 

replaced by selecting additional homes from a larger sample of homes that had participated 

in an outdoor water use survey that was carried out at about the same time as the first study 

period. Discussions with a handful of homeowners from the survey participants led to the 

identification of those who had no objection to the continuous recording of sound at their 

outdoor tap. The final selection was based on the availability of a home garden that was 

irrigated exclusively from the outdoor tap. In addition, homes where the outdoor tap was 

located immediately next to the main house or another building were avoided to minimize 

interference of sound from other water use fixtures. Hosepipes were used for garden irrigation 

at seven of these homes while buckets were used at the other three. The analyses presented 
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in this paper were, however, performed on 1-month long data from the second study period 

when there was more outdoor water use and the recordings were more consistent. 

Installation of microphones and recorders 

The outdoor taps were fitted with electret condenser microphones midway between the tap 

branch pipe. The microphones were covered by PVC rubber and firmly attached to the tap 

branch pipe using cable ties. The purpose of the rubber coverings was to protect the 

microphone from getting soaked with water and to block airborne sound that would complicate 

analysis. In order to block water vapor, the recorders were sealed in plastic pockets with tape. 

The sound recorders, including an external battery pack, were then covered inside tight-fitting 

plastic enclosures that were securely placed in a hole drilled next to the tap. Holes were made 

through one side of the enclosures to provide a passage for microphone wires and sealed in 

place with water-resistant adhesive. Gardena flow meters were screwed onto the taps to 

measure the total volume of water. The Gardena flowmeters stored the total volume of water 

used electronically and were read once every month. The volumetric flow measurements 

were, however, not used in the analyses because the flowmeters were tampered with at some 

of the homes. Figure 3.1 shows the complete microphone and recorder setup. 

 

Figure 3.1 Complete setup of recorder (in PVC casing) and microphone (covered by a block 
of PVC rubber) at the outdoor tap. 

Recordings for exploring the characteristics of sound from the taps 

In order to get acquainted with characteristics of the flow induced sound, six water use events 

were recorded at each tap at the beginning of the study. First the tap was opened fully to reach 

the highest possible flowrate while filling a bucket of known volume. If a hosepipe was used 

for garden irrigation at the respective home it was connected to the tap, otherwise the water 

was run directly into a bucket. Secondly, the tap was opened just enough to reach steady flow 

Stellenbosch University  https://scholar.sun.ac.za



34 

 

and lastly the tap was run at an arbitrary intermediate flowrate. The procedure was repeated 

and the start and finish times of the events were noted. The first recordings provided insight 

into the expected properties of the subsequent audio signals. 

Recording and preparation of recorded sound files for analysis 

Files were transferred from the recorders to a computer once every month. The MP3 files were 

first split into 24-hour segments each of which had a size of 84 megabytes except the last file 

which was shorter. The 24-hour segment length was chosen because it simplified the 

matching of dates and their recordings while at the same time not being too large to load into 

computer memory for analysis. The audio files were uncompressed to WAVE format which 

can be read by most computer programs as ordinary binary files. The MP3 files were 

converted to 16-bit wave file at a sampling rate of 11,025 samples per second. The file 

conversion increased the file size to 1.86 gigabytes, approximately 22 times larger than the 

size of the original MP3 file. 

Manual extraction of tap-use events 

The 1-month long recordings from the second study period were manually analyzed by a 

human operator using Audacity software in order to abstract water use events. In order to 

visualize the sound properties at each point in time, duplicate audio tracks were added to a 

single timeline for each file being analyzed. The first track was displayed as a waveform, while 

the second track was changed to display as a spectrogram of 1,024 samples per window. An 

additional ‘label’ track was added to the timeline for marking and annotating water use events 

identified in the recording. Tap water use events were identified from changes in the amplitude 

of the waveform and visually distinguishable patterns in the spectrogram. For consistency, the 

audio tracks were scaled to fit a 2-minute long window in the available horizontal display area 

of the Audacity software user interface. The appropriate keys on the computer keyboard were 

pressed to scroll the tracks forward or backwards at 2-minute long intervals. Sounds lasting 

no more than 2 seconds were clearly recognizable. Any changes noted in the waveform or 

spectrogram were further examined by playing and listening to the respective segment. 

Sounds from other sources were separated from the typical hissing or splashing sound 

associated with a running tap. Only tap flow events lasting for at least 2 seconds were labelled. 

Once a file had been browsed through to the end, all labels created for each file were copied 

to an Excel workbook for further analysis. A single 24-hour file took about 15–30 minutes to 

analyze depending on the number of sound events present. 
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Audio features used for automatic change-point analysis 

Manual abstraction of water use events from the sound files proved to be a laborious and time-

consuming procedure. A more realistic approach is to use computational techniques to 

automate the detection of water use events from the sound files. An automatic algorithm was 

developed and applied in order to test the performance and suitability of the approach for 

detecting water use events from flow sound at the outdoor tap. The automated algorithm was 

implemented in Visual Basic for Applications but included a dynamic link library written in C++ 

for reading WAVE files. 

Sound files typically contain huge amounts of data that take too long to process directly. The 

audio signals were reduced by computing the short-term energy of a moving window of length 

2.5 milliseconds. The magnitude of the short-term energy generally increases when water is 

flowing in the pipe (Fogarty et al. 2006; Jacobs et al. 2015). Prior to the transformation of the 

signal by short-term energy, a Chebychev high-pass filter was applied to the recordings to 

attenuate frequencies below 700 Hz, which comprised most of the unwanted sounds. The 

normalized short-term energy, also referred to as the power of the signal, was computed by 

(Giannakopoulos & Pikrakis 2014): 

𝐸(𝑘) =
ଵ

ௐಽ
∑ |𝑥௞(𝑛)|ଶௐಽ

௡ୀଵ  (1) 

where k is the window number, n is the sample number, WL is the window length and xk(n) is 

the audio sample at the kth position in window n. 

Algorithm for change-point analysis 

Change-point analysis was used to segment the signal. The goal of change-point analysis was 

to identify points in the signals where there were abrupt changes in the distribution of the short-

term energy. Chen & Gupta (2011) have described a number of approaches that are 

commonly used for change-point analysis. In this study, the Schwarz Information Criterion 

(SIC) approach was adopted. The SIC method involves testing the null hypothesis that there 

is no change-point in a signal. The alternative hypothesis is that there is exactly one change-

point in the signal. 
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Assuming a Gaussian distribution for the natural log transform of the short-term energy values 

with parameters (µ1, σ1), …, (µn, σn), the null hypothesis that was tested was: 

𝐻଴ ∶  𝜇ଵ = ⋯ = 𝜇௡ = 𝜇 and 𝜎ଵ
ଶ = ⋯ = 𝜎௡

ଶ = 𝜎ଶ 

against the alternative hypothesis: 

𝐻ଵ ∶  𝜇ଵ = ⋯ =  𝜇௞ ≠ 𝜇௞ାଵ = ⋯ = 𝜇௡ and 𝜎ଵ
ଶ = ⋯ = 𝜎௞

ଶ ≠ 𝜎௞ାଵ
ଶ = ⋯ = 𝜎௡

ଶ 

where k is the location of the change point and n is the total number of samples. Chen & Gupta 

(2011) have presented a detailed derivation of the SIC approach based on the log likelihood 

functions under H0 and H1. The key formulae are given below. The SIC given no change point 

is calculated by: 

𝑆𝐼𝐶(𝑛) = 𝑛 log 2𝜋 + 𝑛 log 𝜎ොଶ + 𝑛 + 𝑛 log 𝑛  (2) 

and the SIC assuming a change in mean and variance at any point k is calculated by: 

𝑆𝐼𝐶(𝑘) = 𝑛 log 2𝜋 + 𝑘 log 𝜎ොଵ
ଶ + (𝑛 − 𝑘) log 𝜎ො௡

ଶ + 𝑛 + 4 log 𝑛 (3) 

where the variances σ2, σ1
2 and σn

2 are estimated from the signal. The minimum SIC(k) is used 

to test the null hypothesis. A change point is considered to have occurred if: 

𝑆𝐼𝐶(𝑛) > min
ଶஸ௞ஸ௡ିଶ

{𝑆𝐼𝐶(𝑘)}  (4) 

The location of the change point corresponds to the value of k that minimizes SIC(k). A binary 

segmentation algorithm as presented by Eckley et al. (2011) was then used to recursively 

apply the SIC change-point analysis procedure on the signal subsequences created at each 

step until no more change-points could be detected. 

Automated detection of tap-use events 

Segments in which flow was present were detected from the change point analysis results by 

applying a short-term energy threshold. Recordings from the first week of the study period 

were set aside as training samples for the determination of appropriate short-term energy 

thresholds tailored for the study home (SH) at hand. The performance of the automatic 

algorithm was assessed by comparing the detected tap flow event times to the manually 

abstracted flow event times. For each study home, precision was calculated as the percentage 

of the total detected time that coincided with the manually abstracted event times. Recall was 

obtained by expressing the coincident event time as a percentage of the total flow time 
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obtained manually. The detection algorithm was applied at various systematically adjusted 

short-term energy threshold values. The suitability of each threshold value was evaluated by 

the F score, calculated according to Equation 5: 

𝐹 𝑠𝑐𝑜𝑟𝑒 = (2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙)/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙) (5) 

The F score gives a harmonic mean between precision and recall commonly used to quantify 

the discrimination of classes by a classification algorithm (Polat & Güneş 2009). Higher values 

of the F score statistic are associated with better detector performance. The energy threshold 

value that gave the highest F score value was adopted and tested in the subsequent 3-week 

long sound recordings. 

RESULTS 

Waveform and spectrogram properties 

In the absence of sound, the audio signal had a relatively low amplitude waveform. These 

sections were characterized by random noise normally referred to as “white noise”. Ideal white 

noise is composed of all frequencies at generally equal levels. When played, these white noise 

segments had a clearly recognizable soft sound. The spectrograms for the silent segments of 

the signal were relatively sparse and uniform except for a slightly denser region in the low 

frequency band. Figure 3.2(a) shows a typical waveform and spectrogram for a white noise 

segment. The short-term energy signal was observed to follow a diurnal cycle with values that 

gradually increased during the day and dropped at night. The actual cause of the cyclic 

variation was not established but it is likely that the rise in noise level during the day and the 

increase in temperature of the tap branch pipe contributed to the observed variation. The 

magnitude of the diurnal change was, however, observed to be small in comparison to the 

changes caused by flow sound. The diurnal variation was therefore neglected. 

Time periods when the tap was running were characterized by larger amplitudes in the signal 

waveform. Flow sound caused an increase in the color intensity of the spectrogram in the 

higher frequency bands. Unique horizontal bands could also be traced along the spectrogram 

which contrasted with other types of sounds in the signal. Figure 3.2(b) shows a waveform 

and spectrogram of flow sound for a tap with a hosepipe connected while Figure 3.2(c) shows 

the effect of running the water into a bucket. In many cases the onset of a tap use event 

showed a sudden and brief rise in the waveform amplitude, caused mainly by the rapid 

transition from low to high flow. The turning of the handle when opening or closing the tap also 

contributed to the louder sound observed at the start and end of most events, which was useful 

in cases where other sounds had to be screened out. As might be expected, the splashing of 
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water running directly from the tap into a bucket was usually loud enough to mask the onset 

transient. Figure 3.2(d) represents an indoor water use event that was recognizable at the 

outdoor tap. It can be noted that the waveform amplitude was small for indoor events and that 

the spikes normally present at the start and end of tap use events were virtually absent. 

Sound is conducted reasonably well through solids. As a result, sounds from objects hitting 

the tap or other objects nearby the tap were present in the recordings. In the majority of the 

cases, these sounds created easily noticeable irregularities in the signal waveform and 

spectrogram. An exception to this observation was the sound of objects being moved over 

surfaces nearby the tap, which had a similar spectrogram to that of flow sound. These noises, 

however, were not problematic because they were infrequent, only lasted for brief moments 

and were easy to distinguish audibly. Figures 3.2(e)–3.2(g) show the waveforms and 

spectrograms for the sound of an object hitting the tap, sound of hammering nearby the tap 

and an object being pushed over the ground near the tap respectively. 

While there was not much indication of airborne sound in the recordings, the rubber 

microphone coverings did not seem effective at blocking loud and high pitched airborne 

sounds. Speech sound, for example, was rarely noted in the recordings while the sound of the 

barking of dogs, as shown in Figure 3.2(h), was found in most of the recordings. Occasionally, 

loose cable ties on the rubber coverings would open the microphone up to ambient noise but 

these cases were corrected soon after being discovered. Heavy vehicles passing by a nearby 

road generated intense but low frequency sound as shown in Figure 3.2(i). A mobile phone 

brought near the sound recorder could also cause interference in the audio signal as shown 

in Figure 3.2(j).  
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(a) 

 

(b) 

 

(c) 

  

(d) 

  

(e) 

 

(f) 

 

(g) 

 

(h) 

 

(i) 

 

(j) 

 

Figure 3.2 Waveforms and spectrograms of (a) white noise section with no sound recorded, 
(b) water running through a hosepipe, (c) water run into a bucket, (d) an indoor water use 
event, (e) object hitting tap and nearby objects, (f) hammering near the tap, (g) object sled 
over the ground near the tap, (h) dogs barking, (i) heavy vehicle passing through a nearby 
road and (j) mobile phone interference. 
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Comparison of manually extracted events and automatically detected events 

The precision, recall and F score values obtained from the application of the automatic 

detection algorithm to the training and test data sets are given in Table 3.1. The detection 

algorithm performed well for SH1, SH2, SH3, SH4 SH5 and SH7. The high F score values for 

these homes were possible because the sound of flow in the recordings was generally louder, 

allowing higher energy detection threshold values to be used. Higher threshold values reduced 

false positives substantially, and contributed to overall good detection performance. On the 

contrary, the performance of the detection algorithm was poorer for homes that experienced 

low water pressure on a regular basis, typically during peak demand periods. According to the 

homeowners, SH8, SH9 and SH10 experienced significantly reduced water pressure during 

the morning. These three homes were located in the same neighbourhood near a stadium that 

was still under construction during the study period. It is likely that water pressure in the entire 

neighbourhood was affected by water use at the construction site. Lowering the threshold to 

detect the quieter flow sound in the recordings correspondingly increased false positives and 

reduced the precision. 

Table 3.1 Performance of the detection algorithm 

 Training dataset Test dataset 

Study 

home 

Precision 

(%) Recall (%) F score 

Precision 

(%) Recall (%)  F score 

SH1 92.4 92.5 92.4 97.2 82.4 89.2 

SH2 96.1 100.0 98.0 96.0 99.9 97.9 

SH3 75.9 96.7 85.1 77.6 94.8 85.3 

SH4 97.2 99.3 98.2 93.0 96.1 94.5 

SH5 98.7 98.7 98.7 98.6 99.0 98.8 

SH6 83.2 77.9 80.5 88.2 68.5 77.1 

SH7 97.6 98.9 98.3 98.5 91.0 94.6 

SH8 51.5 82.6 63.4 78.2 68.7 73.1 

SH9 59.8 49.7 54.3 81.7 37.5 51.4 

SH10 63.2 88.7 73.8 67.9 80.1 73.5 

 

The quieter sound of flow related to reduced pressure also presented challenges for the 

human operator labelling water use events. In some cases, the sound of flow would gradually 

fade in the course of a long water use event until the waveform and spectrogram closely 

resembled non-flow sections. One could classify these sections as flow when in fact the tap 

temporarily stopped running, or on the contrary, there could merely have been a transition 
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from loud and turbulent flow to quiet and smooth flow following a drop in flowrate. In the manual 

analysis, if the waveform, spectrogram or audible sound did not indicate flow, the 

corresponding segment was not labelled as flow even if it occurred between tap open and 

close events. Overall, the characterization of flow sound was less precise at low flowrates. 

At SH6 and SH9, the outdoor tap was located between the water consumption meter and the 

house. Many events detected in the automatic algorithm lacked the noise of the tap open and 

close features shown in Figure 3.2(d), except that the amplitude of the waveform was larger. 

It was suspected that the outdoor tap standpipe branched off directly from the pipe running 

into the house so that the sounds of indoor water use events were just as loud in the 

recordings. The application of the simple energy threshold based technique alone did not 

effectively separate the sound of indoor water use events from the outdoor tap water use 

events, leading to reduced F scores at these two homes. 

Outdoor water use characteristics 

Figures 3.3 and 3.4 are presented to show the general pattern of water use at the outdoor 

taps of the study homes for the period analyzed. The summaries were limited to the study 

homes that had an F score of at least 85% in the test data detection results. SH6, SH8, SH9 

and SH10 were therefore excluded in the results presented in Figures 3.3 and 3.4. 

Although the study was targeted at water used for garden irrigation, most of the homeowners 

had indicated other uses of the outdoor tap that are ordinarily associated with indoor use, for 

example washing clothes or cleaning the house. Figure 3.3 presents the frequency distribution 

of the outdoor tap water use events according to duration, plotted on a logarithmic scale. At 

least 50% of all the water use events lasted 1 minute or less, indicating significant use of the 

outdoor tap for purposes other than irrigation at the homes where a hose pipe was used for 

irrigation. 
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Figure 3.3 Frequency distribution of tap water use events by duration. 

Figures 3.4 and 3.5 show the diurnal tap use pattern during weekdays and on weekends 

respectively. The horizontal axis represents the time of the day in hours while the vertical axis 

represents the total duration the tap was running during each respective hour averaged over 

the 1-month study period and the study homes. Generally, peak water use at the outdoor tap 

occurred between 8 and 11 am. Pressure at the outdoor tap is likely to vary with time 

throughout the day and from one household to another. As a result, the duration of tap use 

shown in Figures 3.4 and 3.5 does not exactly represent the intensity of water use. The two 

figures, however, portray periods during the day when most outdoor tap use activities occur. 
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Figure 3.4 Diurnal water use pattern during weekdays. 

 

Figure 3.5 Diurnal water use pattern on weekends. 

DISCUSSION 

Privacy issues 

It is likely that continuously recording sound, as was the case in this study, could potentially 

intrude into personal privacy of the homeowners. Presumably, recording speech sound would 

particularly raise concerns among many people. Besides privacy issues, continuous recording 

creates large files which dramatically increase storage requirements and computer processing 

time. The use of a barrier to block sounds, as in this study, may not sufficiently protect the 

homeowners’ privacy. Another measure could be the use of custom designed modules that 
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speech for instance, indecipherable. A similar configuration was used by Fogarty et al. (2006), 

though not for privacy reasons, with the benefit of low disk storage requirements. Alternatively, 

the signal could be preprocessed so that only the parameter values of interest are stored. 

Further research 

This study focused on detecting the start and finish times of the outdoor tap water use events. 

Some reported studies suggest the potential for estimating the flowrate from the flow induced 

sound or vibrations. Evans et al. (2004) have demonstrated that pipe flowrate is strongly 

correlated to the variance of the noise of audio signals from the pipe. Kakuta et al. (2012) 

developed a relationship between flowrate and the sound pressure level. Jacobs et al. (2015) 

have also shown correlation between flowrate and the amplitude of the peak modus frequency 

of the sound of a tap. However, these techniques are unlikely to achieve a similar performance 

for sound recorded at the outdoor tap because the flow induced sound usually mingles with 

other sounds, such as the running water striking the ground or splashing into a container. 

Additional challenges include the effect of pipe material, pipe size and age, as well as tap 

configuration. Further research is required to evaluate the accuracy of flowrate estimates that 

can be achieved for sound of flow at the outdoor tap. Apart from analytical methods used in 

the studies above, learned probabilistic models are a potential area that could be exploited to 

improve the performance of these techniques. 

CONCLUSIONS 

This paper presented findings from the use of sound to deduce the start and finish times of 

water use events at the outdoor tap. The analysis was performed on 1-month long sound 

recordings from the outdoor tap at 10 study homes. Flow sound was noted to have distinct 

spectral properties that were easily recognizable when the sound waveform was displayed as 

a spectrogram. The detection of water use events from the recordings was effectively 

automated by an SIC based segmentation algorithm and the application of a customised short-

term energy detection threshold. The approach described is a low-cost alternative to smart 

metering that is especially suited to the study of outdoor water use.  
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Chapter 4 

Domestic irrigation water end-use modelling of leafy vegetables 

INTRODUCTION 

The CIWU model for estimating irrigation requirements for vegetated areas around the home 

was presented in Chapter 2. The characteristics of the irrigation water using features around 

the home must be known in order to make estimates using the CIWU model. Water use 

estimates may be made by applying typical soil and plant parameter values available in 

literature. The model calculates domestic irrigation water use by the application of 

mathematical formulae based on soil-plant-water interrelationships. The underlying equations 

are based on consumptive use from plants grown under standard conditions.  

It is highly unlikely that the water users would water their gardens exactly according to the 

theoretical irrigation requirement. However, an increasing or decreasing plant water 

requirement would most likely be followed by an adjustment in the amount of water applied, 

especially if signs of water stress become apparent. Both over-irrigation and under-irrigation 

have been reported among residential water users in previous end-use studies (Mayer et al. 

2011). In the CIWU model, plant water use can be represented in numerous flexible ways by 

choosing the appropriate parameter values. Calibration can therefore be applied to adapt the 

model parameters to the observed water use.  

The purpose of this chapter was to fit the CIWU model to a dataset of actual observed 

residential irrigation water use for leafy vegetables. During the outdoor tap water use study 

reported in Chapter 3, a participant who watered his garden using a bucket agreed to maintain 

a daily record of the amount of water used at each irrigation event. A detailed two-month-long 

dataset was created indicating the number of buckets of water applied to the backyard garden 

and the time of each application. The dataset was used in this chapter to test and verify the 

performance of the CIWU model. The dataset was only sufficient to demonstrate the 

application of the CIWU model on a single end-use, namely irrigation of leafy vegetables.  

METHODOLOGY 

Fitting the CIWU model to measured water use involved choosing appropriate parameter 

values. Seven parameter values were identified from the irrigation water use model: the crop 

coefficient, Kc, the root zone depth, Zr, the moisture content at field capacity, θFC, the moisture 

content at permanent wilting point, θPWP, the soil moisture depletion level just before water 

application, Dr1, soil moisture depletion level after water application, Dr2, and the irrigation 
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factor, fe. Crop factors for most plants are available in literature. For seasonal plants, separate 

Kc values are provided for the early, mid and late-season growth stages. To correctly apply 

these Kc values, the planting date must be known. Estimated values of θFC and θPWP are also 

available in literature for different types of soils. However, the determination of soil type 

requires special tests which were not carried out and which would be unnecessarily 

demanding considering the nature and aims of this research component. The values of Dr1 

and Dr2 are dependent on soil moisture levels maintained by the water end user. To maintain 

unstressed plant growth, the values of Dr1 and Dr2 have to be kept close to 0, which is 

equivalent to the moisture content at field capacity. If the moisture depletion levels approach 

1, the plant begins to suffer stress and uses less water. The irrigation factor includes the 

irrigation efficiency, which accounts for inevitable losses that occur during water application, 

and a factor representing the tendency for water users to over-irrigate or under-irrigate.  

An exhaustive search was implemented to identify parameters of best fit. The search 

procedure required enumerating and testing all candidate solutions from which satisfactory 

results could be selected. For this analysis, the search involved testing the entire range of 

typical values for each parameter. The technique is computationally intensive and can easily 

become intractable. Two simplifications were made after scrutinizing the model structure in 

order to reduce the number of parameter combinations to be tested. The parameters root zone 

depth, Zr, moisture content at field capacity, θFC, and the moisture content at permanent wilting 

point, θPWP, were first combined to find the total available water, TAW. The parameters Zr, θFC 

and θPWP were therefore replaced by TAW in the exhaustive search. The upper and lower 

bound values of TAW were determined from the typical range of Zr for leafy vegetables and 

the typical ranges of θFC and θPWP. Secondly, a suitable step value was chosen for each 

parameter to achieve reasonable precision while avoiding too many iterations. Further, a 

single Kc value was applied for the entire two-month period using the early, mid and late 

season Kc values to define the range of feasible values. Table 4.1 shows the feasible ranges 

and step values applied in the exhaustive search, which gave a total of 16,224 feasible 

parameter combinations. If the parameters were enumerated at half the step values given in 

Table 4.1, the number of cases to evaluate would have increased from 16,224 to 206,250. 
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Table 4.1 Ranges of parameters values and step values applied in the exhaustive search  

Parameter Feasible range 

(Allen et al. 1998) 

Step value 

Kc 0.70 – 1.05 0.05 

Dr1 0.0 – 0.6 0.05 

Dr2 0.0 – 0.6 0.05 

Zr 0.3 – 0.8 m (lumped into TAW) 

θFC - θPWP 50 – 200 mm/m (lumped into TAW) 

TAW 15 – 120 mm 10 mm 

 

The penman monteith equation (described on page 14) was used to compute daily values of 

reference crop evapotranspiration. The weather data used in the calculations were obtained 

from Chitedze Research Station located about 20 km from the study home in Lilongwe, 

Malawi. Crop evapotranspiration was calculated using crop factors for leafy vegetables given 

by Allen et al. (1998). The daily crop evapotranspiration and the daily irrigation requirements 

were calculated using equations presented in Makwiza et al. (2015).  

For each combination of parameter values, the simulated daily water use values were 

aggregated at weekly time steps, since water use tends to follow weekly cycles. The two-

month water use dataset resulted in 8 weekly estimates of volumetric water use and a count 

of irrigation days. The total number of days when garden irrigation was observed was used as 

the first criteria for identifying potential parameter combinations. Only parameter combinations 

that produced the same number of irrigation events as in the dataset were examined further 

in the subsequent steps. To determine the goodness of fit, R2 values were computed from the 

least squares fit between the simulated volumetric water use and the actual observed usage. 

The irrigation factor was estimated as the slope coefficient of the least squares fit. Parameter 

values that produced weekly volumetric use that closely resembled the actual observations 

were considered more suitable.  

RESULTS 

Table 4.2 shows the ranges of parameter values that were applied in the exhaustive search 

and the best-fit parameter values identified through the search procedure. Several other 

equally good solutions were obtained from the search results. The difference in the R2 values 

between these alternative solutions were marginal so that the performance of any of the 

solutions in the model would be similar.  
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Figure 4.1 shows the correlation between measured irrigation water use and the crop 

evapotranspiration calculated from weather data. Figure 4.2 shows the correlation between 

the observed weekly water use and the theoretical irrigation requirement following selection 

of optimal parameters. The R2 values show that there was better correlation between 

theoretical irrigation requirement and measured water use than there was between 

evapotranspiration and measured water use. There is however a danger that the model may 

fit the noise component on top of the underlying relationship considering that the dataset is 

relatively small. Under such circumstances, the estimated model would not fit a new dataset 

equally well.  

Figure 4.3 presents the predicted irrigation water use and the measured water use ordered in 

time. The predicted irrigation water use presented incorporates the irrigation factor, estimated 

as the slope of the regression fit. The amount of water applied varied in response the water 

requirement, but the actual change was not always timely or proportional. The dataset is, 

however, too short to provide a clear picture.  

Water was applied on 35 out of the 53 days of recorded water use. There was no indication 

of any pattern in the choice of irrigation days, but in many cases water was applied on several 

consecutive days.   

Table 4.2 Best-fit parameter values adopted identified from the exhaustive search 

Parameter Best-fit parameter 

values 

Kc 1.00 

Dr1 0.5 

Dr2 0.4 

TAW 45 mm 
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Figure 4.1 Correlation between observed irrigation and reference crop evapotranspiration 

 

Figure 4.2 Correlation between observed and predicted irrigation water use 
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Figure 4.3 Actual and observed weekly water use 

The main goal of formulating the irrigation water end-use model was to perform climate impact 

assessment. A comprehensive climate change analysis is beyond the scope of this chapter. 

Instead, the sensitivity of the fitted model to changes in temperature was assessed by 

increasing the input minimum and maximum daily temperature by 1C, which resulted in only 

a 1% rise in the predicted irrigation water use.  

DISCUSSION 
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Once fitted, the model inputs can be varied to examine how the changes introduced affect the 

model outputs for the particular end-uses. Leafy vegetables considered in this study are one 

category of irrigation water end-uses at the home. The approach presented can be repeated 

for other types of garden plants in order to obtain representative parameter values.  

CONCLUSION 

In this chapter, the CIWU model was fitted to an actual observed water use dataset for leafy 

vegetables. The goal was to test the performance of the CIWU model following a choice of 

suitable parameter values. An exhaustive search procedure was used to test various 

combinations of feasible parameter values. The results showed that application of the CIWU 

using suitable parameter values improves the model fit but there is a need to test the model 

using a larger dataset that would allow validation or preferably cross validation. The analysis 

included only one irrigation water end use but the same procedure could be applied on other 

irrigation end-uses. Additionally the results can be extended to multiple households in a full-

scale application of the CIWU model.  
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ABSTRACT 

Malawi has one of the highest urbanisation rates in Africa, with an urban housing approach 

that favours large residential plot sizes. The impact of plot size on residential water use was 

evaluated by examining water use records, obtained for the period between January 2009 and 

December 2014, for formal residential properties in the City of Lilongwe. Water use increased 

with plot size in line with other reported research but the dataset contained a considerable 

proportion of large plots, which were also associated with higher residential water use than 

presented in similar studies. The findings of this study point to the need for collaboration 

between water managers and urban planners to promote increased access of urban water 

supplies by appropriately managing future residential plot sizes. 

Keywords: residential plot size, urban water use, equitable water use 

INTRODUCTION 

Malawi is a relatively small landlocked country in southern Africa with an area of 118,484 km2 

and a subtropical climate. The population is estimated at 13 million and continues to grow at 

an estimated rate of 4.8% per annum (National Statistical Office 2008). A more recent and 

rather pressing situation with regard to urban water supply is the significant relocation from 

rural areas to urban centres. At an urban influx rate of 5.2% per annum, Malawi has one of 

the highest urbanisation rates in Africa (Government of Malawi 2013). Along with urban 

population growth has come an urgent need for new housing developments and the necessity 

to expand and upgrade infrastructure for effective service delivery (UN-HABITAT 2010). The 
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population of Lilongwe, the capital and administrative city of Malawi, has more than doubled 

since 2000 (Brown 2011).  

The Lilongwe Water Board is already under increasing pressure to raise its production to meet 

the progressively rising residential, commercial and industrial water demands. Currently, new 

residential water connections are considered the main factor driving up water use (Lilongwe 

Water Board 2012). Lilongwe Water Board (2015) estimated residential water use in Lilongwe 

at about 60% of the total supply in 2010 and projected disproportionately rising water use in 

the subsequent years where the residential sector becomes more dominant through 

population growth. In 2014, the Lilongwe Water Board reported a 5.6% deficit in water supply 

following which plans were made to expand one of its main reservoirs, Kamuzu Dam I, to 

achieve a daily yield increase of 28.9%. However, at the current trend of population growth in 

the City of Lilongwe, water demand will outstrip the newly proposed daily minimum reservoir 

yield by 2025 (Lilongwe Water Board 2015).  

Strategies for managing residential water use at the household-level can therefore play an 

important role in curbing present demands and reducing the impact of future supply shortages. 

Residential water use results from indoor use, which comprises water used for food 

preparation and basic hygiene, and outdoor use, which comprises water used for gardening, 

car washing and the like. Indoor use remains fairly constant throughout the year whereas 

outdoor use is more responsive to changes in climatic factors. Access to sufficient quantities 

of water for indoor use is known to improve public health and hygiene, particularly where water 

connections are made to houses (Howard & Bartram 2003). Since outdoor water use is more 

elastic than indoor use, curtailment of this water use component is the primary way in which 

utilities manage short-term climate-related shortages (Jacobs et al. 2007). With regard to 

outdoor use, long-term conservation measures are aimed at reducing the responsiveness of 

water use to changes in climatic factors (Breyer & Chang 2014). 

With improved management of customer water billing information at the Lilongwe Water Board 

and capabilities for retrieving datasets for substantially large numbers of customers spanning 

relatively long time periods, it is now possible to perform demand-side residential water use 

analyses for the City of Lilongwe. However, lack of readily available household-level socio-

economic information precludes a detailed residential water use analysis. For single family 

houses, plot size has been reported to be the single most important factor affecting water use 

elsewhere (Jacobs et al. 2004; Van Zyl et al. 2008; Breyer & Chang 2014). Van Zyl et al. 

(2008) observed that plot size gave reliable water use estimates even when other significant 
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determinants of water use were disregarded.  Patterns of residential water use in relation to 

plot size can therefore provide useful insights into water use in the City of Lilongwe.   

In this paper, patterns of water use for residential plots in selected neighbourhoods in the City 

of Lilongwe were examined using monthly customer billing records for the period 2009 to 2014. 

Annual averaged and monthly averaged daily water use were explored to derive patterns of 

water use in relation to residential plot size. In addition, the peak water use period and the 

minimum water use period were identified in order to examine the influence of seasonal factors 

on water use in distinct plot size categories. This analysis is of key interest, since residential 

plot sizes specified in the prevailing housing standards and guidelines (Government of Malawi 

1987) are generally quite large, and considered unsustainable in meeting future housing 

demands (Brown 2011). The results are an important input for consideration in framing policy 

and strategies for both urban land use planning and water supply management. 

METHODS 

Datasets 

Household-level water billing records for the period between January 2009 and December 

2014 were obtained from the Lilongwe Water Board in February 2015. A query was run to 

extract billing records from the customer database for six neighbourhoods identified as 

predominantly residential out of the 58 neighbourhoods in the city of Lilongwe. 

Neighbourhoods closest to the city centre were selected, because these were known to be 

least affected by pressure drops during peak demand periods and experienced the fewest 

water supply outages. These neighbourhoods also happen to be amongst the oldest formal 

residential developments in the city of Lilongwe. Most of the plots in the six selected 

neighbourhoods were developed from the 1970s and can therefore be assumed to have 

minimal use of piped water for construction purposes, with few vacant plots.  

The original dataset contained a total of 681,797 meter readings for 11,378 customers. 

Aggregating repeated readings taken at meter replacements resulted in 666,476 unique 

monthly records. The dataset was retrieved by customer water account numbers to protect 

customer personal information. The attributes included were meter reading, meter read date, 

plot number, neighbourhood code, tariff code and actual billed monthly consumption.  

The Lilongwe Water Board provides a single metered connection per residential plot. Semi-

detached houses are normally built on adjacent plots that have separate lease agreements 

and are also furnished with separate water meter connections. Larger sized plots have a single 

water meter, although it is common to have a second smaller dwelling unit meant to be a guest 
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wing or a servants’ quarters. Plots that have swimming pools are provided with an additional 

water meter that is charged at a commercial tariff. 

Residential plot layout maps on hard copies and a few in GIS format were obtained from the 

Lilongwe City Assembly, the Malawi Housing Cooperation and the Lands and Surveys 

Department. The Lilongwe City Assembly is a local government authority that undertakes town 

planning, including allocation of serviced plots for private housing development. The Malawi 

Housing Corporation is a parastatal responsible for the development and provision of housing 

in urban areas. The Malawi Housing Corporation has become a major housing provider in 

cities since its establishment in 1964. The Lands and Surveys Department coordinates all land 

survey tasks and is the custodian of nationwide mapping information from various land use 

sectors.  

Weather data for the City of Lilongwe was obtained from Chitedze Research Station. The City 

of Lilongwe lacks a broad network of weather stations (Department of Climate Change and 

Meteorological Services n.d.). Although the selected weather station lies about 20 to 30 km 

away from the study sites, it was the preferred station because it has the most complete and 

consistent record of historic weather in Lilongwe. Daily weather records were aggregated at 

monthly intervals to correspond with water meter read intervals in the water use data. These 

weather data were used to determine average monthly temperature and rainfall for the six-

year study period.  

Water use data processing and screening 

The plot layouts acquired were used to obtain plot sizes and to identify single family detached 

or semi-detached residential plots. At various points during analysis, the plot layouts were 

checked against high resolution aerial photographs available at the Lands and Surveys 

Department to verify whether the originally-planned plot layout matched the existing site plot 

layout. The hard copy layout maps were scanned, imported into Quantum GIS software, geo-

referenced and digitised. The digitised file was combined with the available GIS-based 

residential plot layouts to form a single shape file. Plot sizes were extracted by plot number 

from the attributes of the combined GIS file. The table of plot sizes created was joined to the 

customer water use table using the plot numbers field available in both data tables. Not all 

customer water accounts could be matched to corresponding plot size information because 

some customer records did not have plot numbers. Likewise, plot numbers were missing for 

some plots in the layout maps. The plot sizes were used to group all customers into plot sizes 

categories at 500 m2 class intervals ranging from 0-500 m2 to 7,000-7,500 m2.  
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A series of filter criteria were applied to remove customer records that were not relevant to the 

study and records that contained irregularities. Table 5.1 shows the number of customers and 

monthly records retained at each processing stage. Non-residential customers were removed 

using an appropriate tariff code provided in the data. All customers whose plot sizes could not 

be found were removed. Customers with plot sizes exceeding 8,000 m2 were also removed 

from the data. Wherever more than five monthly records were missing for a customer in a 

particular year, the entire yearly record of that customer was discarded. It was observed that 

long meter read intervals usually gave water use readings that were not consistent with the 

rest of the customers’ water use records, mostly being too low for the given period. A plausible 

reason could be readings taken after a period of vacancy of dwelling units. There were also a 

few extraordinarily large records taken over very short periods. It was decided to discard all 

records with meter read intervals shorter than 20 days or longer than 40 days. Monthly records 

exceeding 600 kilolitres (kL) were considered too high for residential connections and these 

were excluded from the analysis. A few records were noted to have meter read dates that fell 

outside the data extraction period. Any records with such erroneous entries were removed 

from the dataset.  

Table 5.1 Number of customers and monthly records retained at each processing stage 

Step Description Number of 

customers 

remaining 

Number of 

monthly records 

remaining 

1 Total number of records extracted 11,328 681,797 

2 Aggregate duplicate monthly meter readings 11,328 666,476 

3 Remove non-residential connections 10,725 638,275 

4 Remove customers whose plot sizes were not available 4,074 281,550 

5 Remove customers with plots larger than 8,000 m2 4,066 280,995 

6 Remove yearly customer records with more than five 

gaps or zeros  

4,005 274,067 

7 Remove meter readings less than 20 days and greater 

than 40 days 

4,005 245,743 

8 Remove monthly consumption readings greater than 600 

kL 

4,004 245,418 

9 Remove records with meter read dates falling outside 

study period 

4,004 245,411 

 

Stellenbosch University  https://scholar.sun.ac.za



59 

 

Computation of key variables 

The average annual daily demand (AADD) and average monthly daily demand (AMDD) were 

calculated for each customer for each year. The AADD for each customer was obtained by 

dividing the total annual consumption by the number of days in that year. The AMDD was 

calculated by dividing the monthly consumption by the number of days between consecutive 

meter readings. Monthly consumption records typically span across consecutive months. The 

AMDD obtained from a given billed consumption was assigned to the month when the latter 

meter reading was taken.  

In order to compare the interactive effect of seasonal weather changes and plot size on water 

use, monthly peak factors were calculated for each plot size category. Monthly peak factors 

were calculated by dividing the highest AMDD by the AADD for the whole six-year period. 

Peak factors are conventionally used to calculate peak flow requirements for the design of 

water supply systems, and therefore provide a sound basis for comparison of summer peak 

water use with other studies.    

RESULTS AND DISCUSSION 

Plot size distribution 

Table 5.2 gives the distribution by plot size category of the 4,004 customers that met the filter 

criteria presented in the previous section. The table also shows the spread of the customers 

in each of the six selected neighbourhoods. In all subsequent analyses, customers falling in 

each plot size category are lumped together irrespective of neighbourhood.  
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Table 5.2 Plot size distribution 

Plot size 

category (m2) 

Neighbourhood Total 

number of 

customers 

Percentage of  

the sample  

(%) 
A B C D E F 

0 – 500 638 504     1,142 28.5 

500 – 1,000 396 251  192   839 21.0 

1,000 – 1,500 13 18 7 212  10 260 6.5 

1,500 – 2,000 5  130 302  16 453 11.3 

2,000 – 2,500   66 324  55 445 11.1 

2,500 – 3,000   14 65 1 44 124 3.1 

3,000 – 3,500    20 11 55 86 2.1 

3,500 – 4,000    8 18 162 188 4.7 

4,000 – 4,500    1 88 38 127 3.2 

4,500 – 5,000     138 47 185 4.6 

5,000 – 5,500    2 30 13 45 1.1 

5,500 – 6,000     37 7 44 1.1 

6,000 – 6,500    1 20 5 26 0.6 

6,500 – 7,000 1   1 15 1 18 0.5 

7,000 – 7,500     22  22 0.6 

 

Water use patterns across customers 

The AADD of all customers calculated for the period between 2009 and 2014 ranged from 1.2 

to 1.5 kL/plot/day. Figure 5.1 shows the frequency distribution and the cumulative frequency 

distribution of AADD for the year 2014. The household-level AADD had a positive skew that 

resembled the frequency distribution of plot sizes in the study sample. About 90% of the 

customers had AADD values below 2.5 kL/plot/day. The other 10% customers accounted for 

at least 25% of the total consumption in the study sample. The highest water users were found 

among the top 2% of the customers, with AADD ranging from 5 to 10 kL/plot/day.  
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Figure 5.1 Frequency distribution of AADD 

Water use by plot size category 

The mean AADD values for the distinct plot size categories are plotted in Figure 5.2. Water 

use clearly increases with plot size up to about 5,000 m2. The relationship between AADD and 

plot size is less clear for the larger plot size categories. The variance increases for the larger 

plots sizes, leading to larger standard errors, meaning that the mean water use estimates 

become less precise than in the smaller plot size categories as shown in Table 5.3. The exact 

cause of the large variation could not be established from the available data. Obviously the 

relatively smaller number of properties larger than 5000 m2 made the differences in water use 

to stand out. Furthermore, one of the neighbouhoods where some of the largest properties 

were located had a stream running through it. It is likely that some of the households in this 

neighbourhood used the stream or shallow wells to complement their outdoor water needs, 

leading to lower billed water consumption relative to plot size.     
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Figure 5.2 Water use variation with plot size 

Table 5.3 Summary statistics for AADD by plot size category averaged over the period 2009 
to 2014 

  AADD (kL/plot/day) 

Plot size category 

(m2) 
Mean 

Standard 

deviation 
Standard error 

0 – 500 0.648 0.367 0.004 

500 – 1,000 0.878 0.655 0.009 

1,000 – 1,500 1.470 0.820 0.022 

1,500 – 2,000 1.506 0.886 0.017 

2,000 – 2,500 1.554 0.972 0.019 

2,500 – 3,000 1.642 1.025 0.038 

3,000 – 3,500 2.000 1.299 0.058 

3,500 – 4,000 2.306 1.640 0.049 

4,000 – 4,500 2.513 1.846 0.068 

4,500 – 5,000 2.748 1.837 0.056 

5,000 – 5,500 2.570 1.758 0.109 

5,500 – 6,000 2.713 2.116 0.133 

6,000 – 6,500 2.915 2.398 0.198 

6,500 – 7,000 2.435 1.949 0.189 

7,000 – 7,500 3.055 1.961 0.171 
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Water use was notably lower in 2012 than for the other years. A follow-up with the Lilongwe 

Water Board revealed that major rehabilitation works were carried out at their water treatment 

facilities, including the replacement of intake pumps between March and December in that 

year (Lilongwe Water Board 2012). Delivery pressure was affected and water supply rationing 

was introduced. The Electricity Supply Commission of Malawi coincidentally happened to 

carry out maintenance works at their main power generation plant in the same period. 

Extensive load shedding was introduced which further disrupted pumping and water supply.  

The mean AADD in 2012 was 12% lower than that calculated for the entire six-year study 

period. As would be expected, AADD dropped considerably in the larger plot size categories, 

while the smallest plot size categories barely showed any reduction in water use. Substantial 

water use reductions were observed in plot sizes larger than 2,500 m2. The average daily use 

for the period 2009 to 2014 was used to calculate the percentage reduction in water use in 

each plot size category in 2012. The percentage water use reduction was 5.6% in the smallest 

plot size category (0 – 500 m2), while at least 14.2% reduction occurred in the plot size 

categories larger than 2,500 m2. The largest plot size category (7,000 – 7,500 m2) had a water 

use reduction of 28.6%. 

Monthly variation in water use 

The monthly variation in water use is depicted by AMDD in Figure 5.3. The average monthly 

maximum temperature and average monthly rainfall for 2009 to 2014 are shown in Figure 5.4. 

Water use generally follows the seasonal trend of temperature and rainfall. Minimum water 

use was observed in March, one month after the period of highest rainfall in February.  

Stellenbosch University  https://scholar.sun.ac.za



64 

 

 

Figure 5.3 Overall annual variation in AMDD 

 

Figure 5.4 Seasonal variation in temperature and rainfall 

Temperatures remain relatively moderate throughout the rainy season but reach the annual 

minimum later during the cool dry season between June and August. As expected, water use 

began to increase towards the end of the rainy season. It is likely that watering of landscapes 

is resumed around this time as evapotranspiration losses can no longer be replenished by 

rainfall. Water use, however, continued to increase as temperatures dropped from May 

throughout the cool dry season. Seasonal horticultural crops in backyard gardens, a common 
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practice in Malawi, are planted during this time. The cool season is conducive to the 

establishment of certain leaf vegetables that are difficult to grow in hot weather.   

Peak water use corresponded with maximum temperatures in October. Peak month water use 

in October was, on average, 70% higher than the minimum winter water use in March. Water 

use subsequently dropped at the start of the rainy season which was also accompanied by a 

decrease in temperatures.   

Monthly patterns of water use in relation to plot size 

Monthly variation in AMDD within each plot size category is given in Figure 5.5. The small plot 

size categories maintained nearly constant AMDD throughout the year, implying predominant 

indoor water use. This observation suggests that indoor water use responded negligibly to 

seasonal weather variations. There was a larger increase in summer water use for the larger 

plots than for smaller plots. Larger plots, generally have larger landscapes and a greater 

potential for outdoor water use than smaller plots.   

 

Figure 5.5 Variability of AMDD by plot size 

Monthly peak factors for the highest usage month (October) were 1.2 and 1.5 respectively, for 

0 – 500 m2 and 1,500 – 2,000 m2 plot size categories. Peak factors approached a maximum 

of 1.6 in the larger plot size categories. The seasonal water use component of the study 

sample was estimated at 24% by deducting the minimum winter water use recorded in March 
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from water use in the rest of the months, and expressing the result as a fraction of total annual 

use. 

Comparison of water use in this study with findings from similar studies 

For the purpose of comparison with similar studies, AADD values obtained in this study for 

Lilongwe are presented in Figure 5.6 together with guideline curves for estimating AADD 

presented by Jacobs et al. (2004) and Van Zyl et al. (2008). The water use results show good 

agreement with the findings by Jacobs et al. (2004) for plot sizes between 0 and 2,050 m2 

reported for three different regions of South Africa and Windhoek in Namibia. Van Zyl et al. 

(2008) provided estimates of water use in South African towns and cities for up to 4,000 m2 

plots, although only 2.7% of the plots in their sample were classified in the range between 

2,000 to 4,000 m2. The AADD guideline curve recommended by Van Zyl et al. (2008), 

represented by the 50% confidence limit, overestimates water use of smaller plot sizes in 

Lilongwe but matches the results of this study for plots in the 3,500 to 4,000 m2 category. For 

the purpose of comparison, per capita water use values for Lilongwe, some selected towns in 

Western Cape, South Africa and Windhoek in Namibia and are given in Table 5.4.  

 

 

Figure 5.6 Comparison of AADD for Lilongwe to similar studies 
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Table 5.4 Per capita water use for selected towns   

Town/City and country Source 
Per capita water use 

(litres/capita/day) 

Lilongwe, Malawi Lilongwe Water Board (2012) 64 

Franschhoek, Western Cape, South Africa Du Plessis (2007) 305 

Paarl, Western Cape, South Africa Du Plessis (2007) 325 

Piketberg, Western Cape, South Africa Du Plessis (2007) 180 

Windhoek, Namibia Uhlendahl et al. (2010) 200 

 

Plot size and neighbourhood water use 

The results presented in the preceding sections show that smaller plot sizes are related to low 

water use per household while at the same time being less sensitive to seasonal weather 

variation. Reducing plot sizes increases both housing density and the number of people in a 

neighbourhood. Jacobs et al. (2013) and Griffioen & Van Zyl (2014) reported relatively 

constant water use of about 10 kL/ha for residential neighbourhoods irrespective of the 

development density. Their findings suggest that plot density does not necessarily increase 

water use per unit area in a neighbourhood. However, the increase in the number of people 

causes a corresponding decrease in the water use per capita (Balling et al. 2008). Breyer & 

Chang (2014) have actually reported an overall reduced per capita water use attributed to 

increase in residential area density in Oregon. They argue that increased density of residential 

areas is a form of “retrofitting of the landscape” that reduces the potential for outdoor water 

use.  

The need for collaboration in urban planning 

The results of this study agree with other studies in the sense that water use increases with 

residential plot size. As temperatures increase in summer, water use increases more for larger 

plots, that is, summer peak factors are higher for large plot sizes than for smaller plot sizes. 

Formal residential plot sizes in Malawi have their origins in the early housing developments 

for government employees. The standard plot sizes were given in the planning standards and 

guidelines prepared then by the Ministry of Lands, Physical Planning and Surveys 

(Government of Malawi 1987). All plots were supposed to range from 300 m2 to 4,000 m2 

depending on the designated density of the residential area, although these size limits appear 

to be occasionally ignored. These housing guidelines and standards favour the development 

of relatively large plot sizes that are inducing high seasonal peak factors and overall increase 

in water use at household level. The plot sizes in the standards have been criticised as taking 

too much urban space and being unsuitable for future climate-related challenges (UN-
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HABITAT 2010; Brown 2011). The determination of plot sizes is, however, beyond the control 

of water supply managers. Thus collaboration is needed between the water supply sector, 

town planners and other stakeholders to achieve sustainable urban housing forms that take 

into account current and future water needs.  

Study limitations 

The total number of records used in the analyses was relatively smaller compared to similar 

studies conducted elsewhere in large metropolitan areas (Jacobs et al. 2004; Jacobs et al. 

2007; Van Zyl et al. 2008). For this reason, the results were not separated by neighbourhood 

in all the analyses in spite of the distinct characteristic features of the selected six 

neighbourhoods. Non-homogeneous characteristics among the selected neighbourhoods that 

were not considered in the analyses, therefore, potentially introduced considerable variability 

in the results obtained from the combined dataset. Factors such as household size and socio-

economic status are known to impact water use habits. Likewise, water pricing structure is a 

key factor influencing residential water use. Further research that incorporates detailed 

information on these factors would increase confidence in the observed results.   

CONCLUSIONS 

This study investigated the effects of plot size on water use of formal housing in the city of 

Lilongwe. Water billing records for 4,004 single-family customers, obtained through a series 

of screening criteria, were analyzed. The AADD, AMDD and summer peaking factors were 

examined with respect to plot sizes. The AADD increased with plot size category. The results 

showed a substantial proportion of large plots, which were also associated with higher water 

use than reported in similar studies elsewhere. Summer peaking factors were higher for larger 

plot size categories, suggesting substantial water usage for outdoor purposes. The results 

obtained provide a benchmark that water managers can use to estimate expected water use 

for new residential neighbourhoods. Water managers can, therefore, use the results to 

advocate urban residential forms that improve the level of access of households to adequate 

quantities of water from the available supplies in Malawi.   
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ABSTRACT 

In this study, panel linear models were used to develop an empirical relationship between 

metered household water use and the independent variables plot size and theoretical irrigation 

requirement. The estimated statistical model provides a means of estimating the climate 

sensitive component of residential water use. Ensemble averages of temperature and rainfall 

projections were used to quantify potential changes in water use due to climate change by 

2050. Annual water use per household was estimated to increase by approximately 1.5% 

under the low emissions scenario or 2.3% under the high emissions scenario. The model 

results provide information that can enhance water conservation initiatives relating particularly 

to outdoor water use. The model approach presented utilizes data that is readily available to 

water supply utilities and can therefore be easily replicated elsewhere. 

Key words | climate change, panel linear models, residential water use 

INTRODUCTION 

Climate change is likely to alter the dynamics of water supply systems. Water supply utilities 

face challenges to maintain adequate supply to growing urban populations and climate change 

is likely to exacerbate the situation. In the sub-Saharan region, there is a general risk of 

reduced flows from existing surface water sources as rising temperature and changing rainfall 

patterns alter catchment yield (Kusangaya et al. 2014). A study to examine hydrological 
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impacts of climate change in Malawi by Adhikari & Nejadhashemi (2016) has found a high 

likelihood of increased surface yield in the northern parts whereas the southern parts are prone 

to droughts. McSweeney et al. (2014) have instead predicted a decrease in summer rainfall 

and a rise in wet season rainfall but no significant changes in annual rainfall. There is a 

consensus, however, that temperature and evapotranspiration will increase with climate 

change in the southern Africa region (Kusangaya et al. 2014). Temperature rise is expected 

to be higher in the dry season (Faramarzi et al. 2013). Historic records from Malawi show that 

temperature has already risen by 0.9 ºC between 1960 and 2006 (McSweeney et al. 2014). 

Climate change may therefore further strain water supply systems by increasing climate 

related water use. The significance of the impacts of climate on urban water use is reflected 

in the growing body of research on the subject. Water demand management, especially in 

relation to climate driven residential water use, will potentially play an important role in abating 

future urban water supply shortages (Breyer et al. 2012). Knowledge of the relationships 

between climatic conditions and water use is necessary for effective planning and 

management of future water use. At present, reduced water use could also curb operating 

costs and help postpone expensive infrastructure projects to develop untapped water sources. 

A recent study of residential water use at selected neighborhoods in the city of Lilongwe 

revealed considerable seasonal variation of water use (Makwiza & Jacobs 2016). The study 

focused on formal residential settlements with private connections although a large proportion 

of residents in the city still live in informal settlements served by communal water points and 

an estimated 25% still lack access to piped water (UN-HABITAT 2011). Most of the residential 

customers included in the study lived in single family semi-detached homes built on relatively 

large plots. All the homes included were metered separately and billed on a monthly basis. 

Water use was found to be closely related to residential plot sizes. Similar positive 

relationships between plot size and water use have been reported in South Africa and Namibia 

based on empirical analyses (Jacobs et al. 2004) and based on end-use modeling (Jacobs & 

Haarhoff 2004). The climate sensitive component of residential water use in Malawi was 

reported to be 24% of the annual residential usage. These observations indicated 

considerable outdoor water use and raised questions about potential impacts climate induced 

changes might have on residential water use in the city of Lilongwe. 

This paper presents a further analysis of the consumption data used by Makwiza & Jacobs 

(2016) with the aim of estimating potential changes in water use that may result from the 

occurrence of specific predicted climate change scenarios. Panel data analysis techniques 

were used to fit a regression model of the monthly billed consumption at each property in 

relation to the plot size and the theoretical irrigation requirement. Different types of methods 
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are available in literature for forecasting residential water use. Regression analysis is among 

the commonly used statistical methods to model water use. Most authors employ cross-

sectional regression to relate water use recorded at a given point in time to a set of 

independent variables. Other authors utilize time series analysis to model trends and 

seasonality in water use datasets that extend over multiple monthly or annual time periods. 

When cross-sectional and time series observations are combined in a single panel linear 

regression model, there is reduced bias from unobserved individual effects resulting in 

improved parameter estimates (Wooldridge 2015). Panel linear regression techniques are not 

yet very popular in water use modelling but their use is likely to increase with better 

management of customer records in electronic databases. With panel data analysis, it was 

possible to estimate regression coefficients taking into account the variation of water use both 

among customers and over time. Martínez-Espiñeira (2002), Worthington et al. (2009) and 

Polebitski & Palmer (2009) have effectively applied panel data analysis techniques to 

residential water use. The panel linear analysis was used to find the average change in water 

use at a property that would result from climate change due to predicted future temperature 

and rainfall conditions. Unlike traditional regression or time series analysis, panel linear 

models reduce bias in model estimates by controlling for unobserved heterogeneity in the 

subjects. The fitted model was used to estimate water use for the year 2050 from 10 Global 

Climate Model (GCM) projections for the city of Lilongwe. 

METHODOLOGY 

Datasets and data preprocessing 

Water use data originally provided by the Lilongwe Water Board for the years 2009–2014 

contained monthly records for 11,378 customers. The water use data had been previously 

screened to remove customers with missing plot size information and to remove irrelevant and 

irregular monthly consumption records. A detailed description of the steps followed is given in 

Makwiza & Jacobs (2016). In the present study, the entire record set for 2012 was discarded 

because of a significant reduction in water use that occurred in that year due to maintenance 

works at the Lilongwe Water Board. An additional filter was also applied to the dataset in the 

present study to remove customers with more than three missing monthly water use records 

per year in order to create a more balanced panel dataset. This further step improved the 

performance of the panel linear models used in the subsequent analyses. In addition, each 

customer account had to have records in all the years spanning the data. The final water use 

dataset contained 2,146 customers and a total of 115,497 monthly records. 
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Daily weather data observed at Chitedze Research Station from 2009 to 2014 was applied in 

the computation of climatic variables. Climate change projections for Chitedze Research 

Station were obtained from the Climate Information Platform hosted by the University of Cape 

Town (Climate System Analysis Group n.d.). Ten GCM outputs were available at 50 km grid 

resolution for two greenhouse gas emission scenarios, namely RCP4.5 and RCP8.5 (also 

referred to as B1 and A2 respectively). The RCP4.5 scenario assumes low emissions of 

greenhouse gases while RCP8.5 assumes high emissions of greenhouse gases. The list of 

GCMs included on the Climate Information Platform is given in Table 6.1. The climate 

projections downloaded for Chitedze Research Station comprised monthly minimum 

temperatures, monthly maximum temperatures and monthly total rainfall spanning the years 

1960–2100. Only the periods between 2009 and 2014 and between 2045 and 2065 were used 

in this study. 

Table 6.1 List of GCMs extracted for use in this study  

Climate model Institution 

MIROC-ESM  Météo-France/Centre National de Recherches Météorologiques, 

France 

CNRM-CM5  Météo-France/Centre National de Recherches Météorologiques, 

France 

CanESM2  Canadian Centre for Climate Modelling and Analysis, Canada 

FGOALS-s2  National Key Laboratory of Numerical Modeling for Atmospheric 

Sciences and Geophysical Fluid Dynamics (LASG)/Institute of 

Atmospheric Physics, China 

BNU-ESM  Beijing Normal University 

MIROC5  Center for Climate System Research (University of Tokyo), National 

Institute for Environmental Studies, and Frontier Research Center for 

Global Change (JAMSTEC), Japan 

GFDL-ESM2G  U.S. Department of Commerce / National Oceanic and Atmospheric 

Administration (NOAA)/Geophysical Fluid Dynamics Laboratory 

(GFDL), USA 

MIROC-ESM-CHEM  Center for Climate System Research (University of Tokyo), National 

Institute for Environmental Studies, and Frontier Research Center for 

Global Change (JAMSTEC), Japan 

GFDL-ESM2M  Geophysical Fluid Dynamics Laboratory (GFDL), USA 

MRI-CGCM3  Meteorological Research Institute, Japan 

Bcc-csm1-1 Beijing Climate Center (BCC), China Meteorological Administration 

(CMA) 
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Future daily climate projections 

Projections for a 21-year-long period centered on the year 1950 were extracted from the 

downloaded climate change data. The mean values of the monthly minimum and maximum 

temperature and the monthly rainfall were calculated for the 21-year period. Corresponding 

mean values were calculated for GCM projections for the period 2009–2014 to form a baseline 

for determining the expected departures in temperature and rainfall due to future climate 

change. The 2009–2014 reference period was chosen to match the length of the available 

customer water use dataset. In addition, consistent daily weather observations were available 

for the same period. Temperature anomalies and rainfall ratios for 2045–2065 were calculated 

relative to the mean values for the 2009–2014 period. The delta change technique (Hay et al. 

2000) was used to create sequences of future daily temperature and rainfall by applying 

monthly temperature deltas and precipitation ratios to the corresponding actual daily weather 

observations for the baseline period. According to Poulin et al. (2011), the computation of the 

future daily temperature and rainfall can be represented by the following equations: 

𝑇௙௨௧௨௥௘,ௗି௠ = 𝑇௢௕௦௘௥௩௘ௗ,ௗି௠ + 𝐷𝑒𝑙𝑡𝑎𝑇௠ (1) 

𝑃௙௨௧௨௥௘,ௗି௠ = 𝑃௢௕௦௘௥௩௘ௗ,ௗି௠  ×  𝑅𝑎𝑡𝑖𝑜𝑃௠  (2) 

where Tfuture,d-m is the future temperature for day d and month m, Tobserved,d-m is the observed 

temperature for day d and month m under the reference period and DeltaTm is the GCM 

temperature anomaly. Likewise, Pfuture,d-m is the projected rainfall for day d and month m, 

Pobserved,d-m is the observed rainfall for day d and month m under the reference period and RatioPm 

is the GCM rainfall ratio. 

Variables for statistical analysis 

The dependent variable was the water use given by the average monthly daily demand 

(AMDD). AMDD was calculated by dividing each customers’ monthly consumption by the 

respective number of days between meter readings. AMDD was measured in kilolitres per plot 

per day (kL/plot/day). It was important to convert monthly consumption to daily averages for 

the variates to be commensurable since monthly readings were often taken at irregular 

intervals. 

Two independent variables and a product term between the two variables were considered in 

the analysis. The purpose of the product term was to introduce interaction effects between the 

main effects in the analysis. The first independent variable included in the analysis was the 

plot size (PSize), measured in m2, for each customer in the water use dataset. Plot size is 
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related to building size, the number of occupants, the number of water using fixtures and the 

income levels. Plot size was therefore expected to explain much of the variation associated 

with indoor water use. 

The second independent variable, daily irrigation requirement (IReq), and the product or 

interaction term (PSize*IReq) were considered to be most suitable to measure the effect of 

climatic variation on water use. Climatic factors essentially influence outdoor water use. It was 

assumed that water is applied outdoors primarily to replenish evapotranspiration losses from 

plant surfaces. Rainfall restores soil moisture losses and reduces the need to water the 

landscape. Temperature and rainfall time series were therefore transformed into theoretical 

irrigation requirements per unit area by first calculating the crop evapotranspiration and then 

applying the soil-water balance equation to incorporate effective rainfall. Irrigation water 

requirements were calculated based on indicative parameter values for turf grass. The 

estimated irrigation requirements were not expected to equate directly to the landscape 

irrigation but provided a means of isolating the weather sensitive water use component after 

scaling with an appropriate regression coefficient. 

It was considered appropriate in this study to assume that garden irrigation was the main 

contributor to outdoor use. Research from various countries, including South Africa (Jacobs & 

Haarhoff 2007), USA (Mayer et al. 1999) and Australia (Beal & Stewart 2011) have noted that 

garden irrigation normally drives outdoor use. Garden irrigation may, however, not be 

representative of outdoor use under all conditions. For example, swimming pools have been 

found to contribute 37% (Siebrits 2012) and 7–8% (Fisher-Jeffes et al. 2015) to the total water 

use of residential properties in Cape Town. During water restrictions, outdoor irrigation may 

be banned, obviously invalidating the assumed relationship between weather and outdoor 

water use. 

Calculation of irrigation requirements (IReq) 

A method for estimating irrigation requirements was described in Makwiza et al. (2015) and 

was applied here with some modifications. The reference crop evapotranspiration was 

calculated using the Hargreaves equation (Hargreaves & Allen 2003): 

𝐸𝑇௢ = 0.0023𝑅௔(𝑇 + 17.8)ඥ𝑇௠௔௫ − 𝑇௠௜௡ (3) 

where ETo is the reference evapotranspiration (mm/day), Rn is the extraterrestrial radiation 

(mm/day), T is the mean daily air temperature (ºC), Tmin is the minimum daily air temperature 

(ºC) and Tmax is the maximum daily air temperature (ºC). Crop evapotranspiration, ETc, was 
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calculated from the reference crop evapotranspiration by the following equation (Allen et al. 

1998): 

𝐸𝑇௖ = 𝐾௖ ∙ 𝐸𝑇௢ (4) 

where Kc is a crop coefficient. 

A daily soil-water balance was used to restrict effective rainfall to the amount necessary to fill 

the root zone depth at any time step. The daily theoretical irrigation requirements were 

estimated by evaluating the following equation recursively (Makwiza et al. 2015): 

𝐼𝑅௝ = 𝑤௝ିଵ − 𝑤௝ + 𝐸𝑇௖ ௝ − 𝑟௝ (5) 

where IR is the net irrigation requirement (mm), ETc is the crop evapotranspiration (mm), r is 

the effective rainfall (mm), w is the soil moisture depletion (mm) in the root zone and subscript 

j denotes day of the year. The total available water was calculated from the following equation: 

𝑇𝐴𝑊 = 1000 ∙ (𝜃ி − 𝜃௉ௐ௉) ∙ 𝑍௥ (6) 

where TAW is the total available water (mm), θFC is the moisture content at field capacity 

(mm/m), θPWP is the moisture content at permanent wilting point (mm/m) and Zr is the root zone 

depth (m). 

Effective rainfall at each iteration was calculated as the amount required to fill the root zone 

depth. Irrigation was assumed to take place when moisture depletion in the root zone depth 

reached 40% of the total available water at field capacity. The theoretical irrigation requirement 

in a day was calculated as the depth required to refill the root zone depth. The water balance 

calculations were performed assuming typical soil and plant parameters of turf growing on a 

sandy loam soil. The soil and plant parameter values used in the calculations were adopted 

from Allen et al. (1998) and are given in Table 6.2.  

Table 6.2 Soil and plant parameters used for estimating irrigation requirements 

Parameter Value 

Allowable moisture depletion, p 40% 

Crop coefficient, Kc 0.85 

Moisture content at field capacity, θF 270 mm/m 

Moisture content at permanent wilting point, θPWP 150 mm/m 

Root zone depth, Zr 0.50 m 
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The monthly averaged daily irrigation requirement (mm), IReq, was calculated by the following 

equation: 

𝐼𝑅𝑒𝑞 =
ଵ

ௗ೘
∙ ∑ 𝐼𝑅௝

௝ୀௗ೘
௝ୀଵ  (7) 

where dm is the number of days in the month, IR is the theoretical irrigation requirement (mm) 

and j denotes the day of the month. 

Statistical model for predicting water use 

A statistical model of residential water use was fitted using panel data analysis techniques. 

The choice of the appropriate panel linear model was based on a comparison of the 

performance of the pooled ordinary least squares (OLS) specification, the fixed effects model 

(FEM) specification and the random effects model (REM) specification. A detailed description 

of these three panel data models is given by Wooldridge (2015). 

The pooled OLS model is efficient in the absence of subject or time specific effects. However, 

pooled OLS model estimates are prone to bias where important variables have been omitted. 

The pooled OLS model was expressed as: 

𝐴𝑀𝐷𝐷௜௧ = 𝛼 + 𝛽ଵ𝑃𝑆𝑖𝑧𝑒௜௧ + 𝛽ଶ𝐼𝑅𝑒𝑞௜௧ + 𝛽ଷ(𝑃𝑆𝑖𝑧𝑒 ∗ 𝐼𝑅𝑒𝑞)௜௧ + 𝜀௜௧   (8) 

where α, β1, β2 and β3 are coefficients, ε is the error term and i and t are indices for customers 

and monthly time periods respectively. 

The FEM controls unobserved heterogeneity between the subjects, customers in this case, by 

introducing a unique intercept for each subject. The coefficient estimates are, therefore, 

consistent and unbiased. The FEM estimator, however, drops all time-invariant variables. For 

this reason, the FEM could not include plot size as an independent variable. The FEM was 

expressed as: 

𝐴𝑀𝐷𝐷௜௧ = (𝛼 + 𝑢௜) + 𝛽ଵ𝐼𝑅𝑒𝑞௜௧ + 𝛽ଶ(𝑃𝑆𝑖𝑧𝑒 ∗ 𝐼𝑅𝑒𝑞)௜௧ + 𝑣௜௧  (9) 

where ui is the fixed effect specific to customer i that was not included in the model, vit is an 

independently and identically distributed error term and the other terms are as previously 

defined. 

The REM treats unobserved effects as part of the random error component. The REM 

therefore does not perform well when prominent variables are missing from the model and 

may, unlike the FEM, give inconsistent coefficients. The REM was expressed as: 
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𝐴𝑀𝐷𝐷௜௧ = 𝛼 + 𝛽ଵ𝑃𝑆𝑖𝑧𝑒௜௧ + 𝛽ଶ𝐼𝑅𝑒𝑞௜௧ + 𝛽ଷ(𝑃𝑆𝑖𝑧𝑒 ∗ 𝐼𝑅𝑒𝑞)௜௧ + (𝑢௜ + 𝑣௜௧)  (10) 

where ui is the random effect specific to customers or time periods not included in the model 

and all the other factors are as previously defined. 

An F-test was conducted between the pooled OLS model and FEM estimates in order to 

ascertain the presence of fixed effects. Similarly, the pooled OLS model was compared to the 

REM using the Lagrange multiplier test to examine the presence of random effects. The final 

choice was between the FEM and the REM which was based on the Hausman test. The 

Hausman test checks if the coefficients of the REM are consistent with those obtained from 

the FEM. All the statistical analyses were carried out using the ‘Linear Models for Panel Data’ 

package (plm) in R statistical software (Version 3.3.1). 

RESULTS AND DISCUSSION 

Current and projected temperature and rainfall 

Figure 6.1 shows monthly series of mean temperature observed for 2009–2014, and the mean 

GCM ensemble temperatures projected for 2009–2014 and 2045–2065. Both the recently 

observed temperatures and the projected temperatures showed a similar trend although the 

projected temperatures for 2009–2014 were about 1.0 ºC higher than the actual observed 

temperatures. In comparison to the 2009–2014 GCM projections, the RCP4.5 and RCP8.5 

temperature projections for 2045–2065 were 1.2 and 1.7 ºC higher respectively. These 

differences indicate the predicted rise in temperature for 2045–2065. Another observation was 

that temperature projections for October, November and December were higher than the rest 

of the year. Interestingly, these are historically the hottest months during the year. 
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Figure 6.1 Mean monthly temperature for 2009–2014 and 2045–2065  

The projected rainfall is shown in Figure 6.2. The change in rainfall is less obvious than that 

of temperature. A comparison of the projected rainfall and actual observed rainfall for the 

2009–2014 period shows that the two rainfall series exhibit similar seasonal patterns but the 

projected rainfall substantially exceeds the observed rainfall at the beginning and towards the 

end of the rainy season (October, November and April). Relative to GCM projections for 2009–

2014, projections for 2045–2065 showed a consistent decrease in rainfall from October to 

December. No consistent change was evident in the later months of the rainy season. Overall, 

there was a decrease of approximately 10% in projected annual rainfall for 2045–2065 under 

both RCP4.5 and RCP8.5 scenarios. It is generally acknowledged that future rainfall patterns 

are more difficult to predict. Vincent et al. (2014) have also argued that future rainfall patterns 

for Malawi are uncertain and could turn out wetter or drier than the prevailing rainy-season 

conditions. 
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Figure 6.2 Mean monthly rainfall for 2009–2014 and 2045–2065. 

Figure 6.3 shows the monthly mean evapotranspiration calculated by Hargreaves equation for 

2009–2014 and 2045–2065. The difference in evapotranspiration between the two periods 

reflects the effect of temperature rise on plant water needs. The results suggest that plant 

water needs would increase throughout the year under the projected future temperatures. 

There was a more pronounced increase in evapotranspiration between October and 

December. 

 

Figure 6.3 Calculated monthly evapotranspiration for 2009–2014 and 2045–2065. 

The theoretical irrigation requirements are shown in Figure 6.4. The predicted monthly 

irrigation requirements for 2045–2065 were generally higher throughout the year. Irrigation 

requirements were predicted to rise the highest between October and December due to both 
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increased temperatures and reduced rainfall. The calculated annual rise in irrigation 

requirements was 5.8% under RCP4.5 and 8.8% under RCP8.5. 

 

Figure 6.4 Calculated monthly irrigation requirements for 2009–2014 and 2045–2065. 

Regression analysis results 

The regression analysis results from the pooled OLS model, FEM and the REM are given in 

Table 6.3. The three model specifications produced very similar coefficient estimates. All 

p-values were significant at alpha level of 0.001. The F-test between the pooled OLS model 

and the FEM was significant indicating the presence of unobserved individual specific effects, 

which in this case originated from time invariant customer effects. The FEM therefore 

produced better parameter estimates than the pooled OLS model. Likewise, the Langrange 

Multiplier test was significant showing that the REM gave better results than the pooled OLS 

model. The Hausman test was not significant indicating consistency in both the FEM and REM 

estimates. Hence all subsequent analyses were based on the REM since it is a more efficient 

specification than the FEM. The REM was also preferable to the FEM because its estimates 

included a coefficient estimate for PSize. 
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Table 6.3 Coefficient estimates and fit statistics for the pooled OLS model, FEM and REM 

 Pooled OLS model FEM REM 

Parameter Coefficient Std. error Coefficient Std. error Coefficient Std. error 

Constant 7.57 × 10–1  1.07 × 10–2   7.59 × 10–1 2.47 × 10–2 

PSize 2.01 × 10–4  4.96 × 10–6   2.01 × 10–4 1.13 × 10–5  

IReq 1.17 × 10–2  3.54 × 10–3  1.23 × 10–2 2.80 × 10–3  1.23 × 10–2  2.80 × 10–3 

PSize*IReq 8.37 × 10–5 1.64 × 10–6 8.40 × 10–5 1.29 × 10–6 8.40 × 10–5 1.29 × 10–6 

R2 0.250  0.074  0.084  

p-value 0.000  0.000  0.000  

F-test for individual 

effects 

  <0.000    

Lagrange Multiplier 

test 

    <0.000  

Hausman test       0.068  

Theta     0.829  

 

The overall REM was significant (p-value < 0.001) and all the model parameters were also 

significant (p-value < 0.001). The R2 values showed that the REM explained only 8.4% of the 

variation in the water use estimates. The R2 value in the FEM model was also comparably 

low. This result was consistent with the large variability inherent in residential water use 

amongst customers. In similar studies, water use records are usually aggregated at block or 

city level, hence suppressing much of the variation with a subsequent improvement in the R2 

value (see Martínez-Espiñeira (2002) and Worthington et al. (2009)). Since the overall model 

was significant and all the parameters were significant, there is evidence to support the 

existence of a trend although the large variation reduces the precision of the model 

predictions. The standard error estimates of the REM were, however, reasonable because of 

the relatively large number of customers in the sample (sample size of 2,149 homes as 

discussed earlier). 

Change in water use with plot size 

The sign of the PSize coefficient was positive, meaning that water use increased with plot size. 

Larger plots will usually contain larger dwelling units that are likely to have more occupants 

and more water using fixtures such as multiple bathrooms, toilets, washbasins and even 

higher plumbing and leakage losses. The estimated coefficient of 2.01 × 10–4 is the estimated 

effect of plot size on water use when the irrigation requirement is zero, which is nearly the 

case in winter. The results indicate that a 100 m2 increase in building size results in an 
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approximate increase of 0.020 kilolitres in indoor water use per household per day 

(kL/plot/day). This additional usage is on top of the average minimum use of 0.759 kL/plot/day 

given by the intercept term. The sum of the constant term and the PSize term therefore 

represent the climate insensitive component of water use in the model. Approximately 90% of 

the customers’ plot size values were between 300 and 4,000 m2. Based on the coefficient 

estimates, average indoor water use varied between 0.819 and 1.562 kL/plot/day. These 

results are similar to the average minimum winter use of 0.695 and 1.563 kL/plot/day 

determined in the previous study for plot sizes in the ranges of 0–500 and 3,500–4,000 m2 

respectively. 

Change in water use with irrigation requirements 

Effects of climate change can be assessed through IReq since changes in temperature or 

rainfall are reflected by changes in irrigation requirements. The coefficient estimates for IReq 

and the interaction term, PSize*IReq, exhibit the anticipated positive signs since an increase in 

irrigation requirements should result in higher water use. Substituting a typical small plot size 

and a typical large plot size into the fitted model provides a picture of the effect of changes in 

irrigation requirements on water use. Given a plot size of 300 m2, a 1 mm rise in irrigation 

requirements is associated with a rise of 0.037 kL/day in water use. A corresponding 

calculation for a plot size of 4,000 m2 gives a rise in water use of 0.348 kL/day. These results 

demonstrate that the relationship between water use and irrigation requirements is conditional 

on plot size. The effect of increased irrigation requirements on water use is greater for larger 

plot sizes. 

Change in water use under future projected climate 

Table 6.4 shows the predicted changes in monthly water use between 2009–2014 and 2045–

2065 calculated using the fitted statistical model for RCP4.5 and RCP8.5 scenarios. The 

predicted rise in annual water use was 1.5% under RCP4.5 and 2.3% under RCP8.5. The 

highest predicted rise in water use was found in November and December. October is already 

a crucial month for water supply in Lilongwe because stream flows are lowest (Lilongwe Water 

Board 2015) while residential water use reaches its peak. Stream flows might remain low for 

a longer period than is the case under the current scenario considering that the early rains 

that occur in October and November are likely to decline according to the 2045–2065 

projections. The rise in water use occurring together with reduced stream flows may potentially 

further strain water supply during this period. These predicted climate related effects on water 

use are, however, small compared to other factors such as urban population growth, which is 

anticipated to affect water use to a greater extent (Lilongwe Water Board 2015). 
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Table 6.4 Predicted percentage change in monthly water use from 2009–2014 to the 2045–
2065 

 Absolute change (kL/plot/day) Percent change (%)  

Month RCP4.5 RCP8.5 RCP4.5 RCP8.5 

Jan –0.006 –0.001 –0.5 –0.1 

Feb 0.023 0.034 2.0 2.9 

Mar 0.017 0.016 1.4 1.4 

Apr 0.011 0.020 0.8 1.5 

May 0.019 0.032 1.3 2.2 

Jun 0.008 0.019 0.5 1.2 

Jul 0.016 0.025 1.1 1.7 

Aug 0.016 0.023 1.1 1.5 

Sep 0.020 0.033 1.2 2.0 

Oct 0.020 0.033 1.2 2.0 

Nov 0.036 0.057 2.1 3.3 

Dec 0.073 0.103 4.9 7.0 

 

Uncertainty and limitations of the climate projections 

Like any other climate change study, the projected changes in water use are subject to 

uncertainty from several factors. There is uncertainty attached to the assumed emission 

scenarios that drive climate change, the inherent natural climatic variability, how well climate 

models represent global or regional climate dynamics and the effectiveness of the 

downscaling technique at recreating the local climatic conditions. In addition, the future values 

of the independent variables used as input in the statistical model in this study were derived 

from a relatively short period of daily weather records whereas long-term averages are 

typically used in climate change studies. These factors suggest that the actual changes in 

future water use due to climate change could differ from the predictions. The results however 

demonstrate that climatic changes could have adverse effects during some months even if the 

impact on the overall annual water use was small. The methodology presented could be used 

to reexamine the water use predictions in the near future using a longer time series as more 

data is accumulated in customer water use databases. 

CONCLUSIONS 

This research focused on modelling residential water use in Lilongwe, Malawi, under potential 

future climate change. A regression model was developed using monthly water use records 

for selected formal residential neighborhoods in the city of Lilongwe. Panel linear models were 

Stellenbosch University  https://scholar.sun.ac.za



86 

 

used to predict water use using plot size, the theoretical irrigation requirements and an 

interaction term between the two variables. Water use was found to increase with both plot 

size and irrigation requirements but the effect of irrigation requirements on water use was 

greater for larger plot sizes. The estimated model was applied to downscaled future climate 

projections to examine potential impacts of climate change on residential water use. The 

expected increase in annual water use was found to be 1.5% under the RCP4.5 scenario and 

2.3% under the RCP8.5 scenario. The results showed that water use may increase the most 

between November and December due to both reduced rainfall and increased irrigation water 

requirements. The estimated model gave an indication of the magnitude of the climate 

sensitive component of residential water use in the city of Lilongwe while the predicted future 

water use provided insight to the impacts of climate change on water use. The results obtained 

are beneficial for planning present and future water conservation initiatives for the city of 

Lilongwe, especially regarding outdoor water use. The model was successfully developed and 

employed in an African city to predict future water use under two climate change scenarios 

and 10 GCM projections. The same approach would apply to any settlement for which 

downscaled climate projections and time series of monthly water use are available. 
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ABSTRACT 

This study examined the performance of panel linear regression models fitted on garden 

irrigation requirements generated from temperature and rainfall time series using parameter 

values of best fit identified by an exhaustive search procedure. The goal was to examine if the 

transforming the weather data to irrigation requirements would improve the performance of 

the regression models in relation to garden water use. Data from the North American 

Residential End Uses of Water database (1999) were used in all the analysis. The R2 values 

obtained were comparable to those from regression on temperature and rainfall but two 

advantages were noted with respect to regression on irrigation requirements. First the model 

intercept gave an estimate of indoor use which was, in the majority of the cases, more accurate 

than the estimate from minimum winter use. Secondly, the estimated coefficients were 

significant in all the cases. The regression on temperature and rainfall, however, produced 

nonsignificant coefficients for some locations.  

Keywords: residential irrigation water use, parameters, climate variables  

INTRODUCTION  

Background 

Residential water use displays a seasonal pattern, related to climatic factors. Seasonal 

variability is known to result primarily from outdoor water use. Typically, water use increases 

during hot summer months and decreases in winter. Establishing a relationship between water 

use and climatic factors is vital for planning conservation strategies connected to outdoor use 

and for the assessment of the impacts of climate change (Balling et al., 2008). In water use 

regression models, the effects of climate are usually considered by introducing the variables 

temperature and precipitation (Taylor, 2012; Chang et al. 2014).   
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Makwiza et al. (2017) applied net irrigation requirements in a panel linear regression model in 

order to incorporate climatic factors in the analysis of residential water use, allowing for climate 

change. The net irrigation requirements were computed based on typical soil and plant 

parameters of lawn grass growing on a loamy soil. These parameters, however, could take 

different values depending on the assumed plant characteristics or soil properties. The 

selected combination of parameter values determines the estimates for evapotranspiration 

and effective rainfall with subsequent impact on the estimated net irrigation requirement.  

Objective of this study 

This study examined the goodness of fit of several regression models used for estimating 

garden irrigation. Panel linear regression analysis (Wooldridge, 2015; Worthington et al., 

2009) was applied to the average monthly daily demand (AMDD) as the dependent variable 

and the theoretical irrigation requirements, derived from observed weather data using optimal 

parameter values, as the independent variable. The models regressed on the irrigation 

requirements were compared to results of corresponding regression models on temperature 

and rainfall. The goal was to determine if the transformation of weather data to irrigation 

requirements, using suitable parameter values, would improve the explanatory power of 

weather inputs in the estimated regression model, and improve estimates of water use for 

garden irrigation. In order to keep the analysis and interpretation of the results simple, and 

considering that the analysis focused on garden irrigation, factors known to influence 

residential water use, for example income and property size, were neglected. The use of panel 

linear analysis was considered to address bias due to omission of variables that could be 

assumed constant over time such as property size.  

METHODOLOGY  

The data used in this study was obtained from the 1999 Residential End Uses of Water 

(REUS) database (Mayer et al., 1999). The specific dataset was selected because it was 

purchased by the Stellenbosch University Water Research group (Civil Engineering) as part 

of an earlier project and all the required information for this study was contained in the dataset. 

An updated REUS database (version 2) was released by the Water Research Foundation in 

2016 (DeOreo et al., 2016) but this new version excludes customer billing records, hence the 

earlier 1999 REUS database was considered more appropriate for this study. The data were 

collected by Mayer et al. (1999) from study locations in 12 cities in North America. The water 

use records originated from a range of climatic conditions and were considered suitable for 

performance evaluation in this research study. The REUS database contained records for 

1000 customers at each study location but more detailed information was provided by Mayer 
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et al. (1999) for a subset of 100 customers from each location. The subsamples used in the 

analysis in this study were obtained from the groups of 100 customers with detailed 

information. Customers with swimming pools were however filtered out in the present study 

since the focus was on garden irrigation. Four datasets that were extracted from the database 

were  

 Disaggregated water end-use data for two two-week long logging periods, one in 

summer and the other in winter  

 Water use data from monthly or bi-monthly billing records for a one-year or two-year 

long period 

 Responses to a questionnaire survey 

 Weather data for the period of the study. 

In the REUS database, the closest weather station to each customer was indicated by an 

identifier field (Mayer et al., 1999). The station identifier field was therefore used to link monthly 

water use records for each customer to the appropriate weather records, also included in the 

REUS database. Monthly net irrigation requirements were calculated for each customer 

according to the equations outlined in Makwiza et al. (2015, 2017). The main steps involved 

the calculation of potential evapotranspiration from weather data using the Hargreaves 

equation (Hargreaves and Allen, 2003) followed by the application of the water balance 

equation to estimate effective rainfall and daily net irrigation requirements.  

Several parameters were described in the equations for computing irrigation requirements. 

The relevant parameters were the soil moisture content at field capacity (θFC), the soil moisture 

content at permanent wilting point (θPWP), the root zone depth (Zr), the crop coefficient (Kc), the 

soil moisture depletion level before water application (Dr1) and the soil moisture depletion level 

just after water application (Dr2). Feasible ranges of these parameters were adopted from 

Allen et al. (1998). All analyses were carried out assuming uniform parameter values for all 

customers from the same location or city. 

The parameters θFC, θPWP and Zr are closely related. The difference between θFC and θPWP 

determines the available water capacity (AWC) of a given soil which typically varies between 

50 and 200 mm/m, the lowest values representing sandy soils and the upper values in the 

range representing clayey soils. The parameter Zr varies between 0.1 and 1.0 m for most 

shrubs, horticultural crops and lawn grass. The product of the root zone depth and the 

available water capacity gives the total available water, TAW, which is the maximum amount 

of water that can be stored in the soil for plant use. The various possible combinations of Zr, 
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θFC and θPWP were therefore conveniently introduced using the single parameter, TAW. Given 

the feasible ranges of Zr and AWC, the values of TAW were considered to range between 5 to 

200 mm.  

The crop coefficient determines the rate at which the water in the soil is lost through 

evapotranspiration. The crop coefficient was varied between 0.3 and 1.2 which covers the 

typical range for the majority of garden plants (Allen et al., 1998). Water application was 

considered to occur when the soil moisture depletion level reached Dr1. Water application was 

assumed to reduce the soil moisture depletion level to Dr2. The parameters Dr1 and Dr2 took 

values between 0 and 1 corresponding to moisture content at field capacity and permanent 

wilting point respectively, and where Dr2 was always less than Dr1. If this moisture depletion 

level was below the allowable depletion level, typically 50%, then the plant suffered stress 

causing a reduction in consumptive use. 

In order to identify suitable parameter values, different parameter combinations were 

enumerated with the aim of obtaining the best fitting regression model between water use and 

irrigation requirements. Suitable combinations of values for TAW, Kc, Dr1 and Dr2 were 

identified by carrying out an exhaustive search in which each parameter was varied 

sequentially at a chosen precision within its feasible range. The parameter TAW was 

enumerated in 10 mm increments. The parameter Kc was enumerated at 0.05 increments. 

Both Dr1 and Dr2 were enumerated at 0.05 increments. The calculation of monthly net irrigation 

requirements for each parameter combination also yielded the number of irrigation events per 

month. A filter was applied to remove all results where the calculated number of irrigation 

events for the peak summer month did not match the average number of events per month 

determined from the REUS questionnaire survey dataset collected by Mayer et al. (1999). 

The generated irrigation requirements were combined with the monthly water use data to 

create a panel dataset. Panel linear regression analysis was then applied to determine the 

explanatory power of the net monthly irrigation requirements generated at each iteration. The 

set of parameter values that produced the highest R2 values were adopted as the most 

appropriate for the location or city being analysed. The R2 values from the regression analysis 

are a measure of the proportion of variation in the data that is explained by the model. The 

suitability of the regression model was further evaluated by the F-statistic for overall model 

significance and t-tests for significance of estimated coefficients.  

Following the identification of suitable parameter values for estimating irrigation requirements, 

a comparison was made between the regression on net monthly irrigation requirements and 
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regression on average monthly temperature and monthly rainfall. This comparison 

demonstrated whether the use of irrigation requirement improved the explanatory power of 

weather inputs in the regression model. 

Panel linear regression requires the application of the most appropriate model specification 

between the pooled ordinary least squares (OLS) model, fixed effects model (FEM) and 

random effects model (REM). The selection criteria of the most appropriate among these three 

model specifications was summarised in Polebitski and Palmer (2009), Worthington et al. 

(2009) and Makwiza et al. (2017). The detailed description and derivation of each of the three 

model specifications are found in Woodridge (2015). The generic forms of the pooled, fixed 

effects and random effects are given by equation 1, 2 and 3 respectively.  

𝑌௜௧ = 𝛼 + 𝛽𝑋௜௧ + 𝜀௜௧  (1) 

𝑌௜௧ = (𝛼 + 𝑢௜) + 𝛽𝑋௜௧ + 𝑣௜௧  (2) 

𝑌௜௧ = 𝛼 + 𝛽𝑋௜௧ + (𝑢௜ + 𝑣௜௧)  (3) 

where Y is the dependent variable,  

X is a vector of independent variables,  

α is an intercept,  

β is a vector of variable coefficients,  

ε is the error term,  

i and t are indices for subjects and time periods respectively,  

ui includes any factor specific to subject i that was not included in the FEM or any factor specific 

to subjects or time periods not included in the REM,  

vit is an independently and identically distributed error term.  

Based on the criteria described by Woodridge (2015), the F test was used to choose between 

the pooled OLS model and the FEM. The Langrange multiplier test was used to choose 

between pooled OLS model and the REM.  Then the Hausman test was used to determine 

whether the REM outputs were as good as the outputs of the FEM. All the statistical analyses 

were carried out in R programming software using the ‘Linear Models for Panel Data’ package.  

RESULTS AND DISCUSSION 

The F test and the Lagrange multiplier tests indicated the existence of fixed effects and ruled 

out the utility of the pooled OLS model in all the cases. The Hausman test was not significant 

for all the regressions performed on irrigation requirements derived using the best-fit 

parameter values. Likewise, the Hausman test was not significant in all cases for the model 
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regressed on temperature and rainfall, thus indicating that the coefficient estimates of the REM 

were as good as those of the FEM. All subsequent comparisons and discussion were therefore 

based on the outcomes of the REM.  

For each study location, the exhaustive search produced several combinations of parameter 

values that gave similar R2 values when the corresponding irrigation requirements were 

applied in the regression model. These sets of parameter values were considered equally 

good and any single combination could well be chosen for application. A further refinement 

could be possible if specific assumptions were made on the parameters. Table 7.1 presents 

one of the several realisations of the best fitting parameter values at each study location.  

Table 7.1 Single instance of best fit combination of parameter values for each study location  

Location TAW (mm) Kc Dr1 Dr2 

Boulder 150 0.60 0.20 0.15 

Denver 20 0.65 0.90 0.80 

Eugene 120 0.85 0.60 0.50 

Las Virgenes 30 0.90 0.30 0.05 

Lompoc 20 0.35 0.25 0.00 

Phoenix 40 0.75 0.40 0.05 

San Diego 70 1.05 0.20 0.05 

Scottsdale 20 1.10 0.60 0.10 

Seattle 120 1.00 0.70 0.65 

Tampa 90 1.10 0.30 0.05 

Walnut Valley 30 0.45 0.10 0.00 

Waterloo 20 0.55 0.80 0.75 

 

Table 7.2 gives a summary of the results from the panel linear regression analysis. The models 

performed better in some locations than others as discussed in more detail below. The R2 

values obtained from the regression on irrigation requirements were comparable to those from 

regression on temperature and rainfall. R2 values were low for Tampa and Waterloo. The 

disaggregated end-use data provided in the REUS database (Mayer et al., 1999) also 

indicated much lower irrigation water use for both Tampa and Waterloo compared to other 

locations. These locations received rainfall throughout the year which could have reduced the 

need for irrigation. Secondary historical weather data also shows that Waterloo has snow fall 

for close to 6 months in a year (Meteorological Service of Canada, n.d.) which would also limit 

irrigation water use.  
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The F-statistic was significant (p<0.001) in all the regression models presented and is not 

reported. The coefficient estimates for both the model intercept and the irrigation requirements 

term were significant (p<0.001) in all the cases. The coefficients for the regressions on 

temperature and rainfall were, however, not significant for some locations. In the case of Las 

Virgenes and Seattle, the rainfall coefficient was positive, which was contrary to the expected 

sign since an increase in rainfall should generally cause a reduction in garden water use.  

An advantage of the model regressed on irrigation requirements is that the intercept has a 

clear and practical meaning. Setting the monthly irrigation requirement to zero leaves only the 

intercept in the model. The intercept can be interpreted as the weather insensitive water use 

which approximates indoor water use. In the model for temperature and rainfall, the intercept 

cannot be interpreted in the same manner, because the weather sensitive component of water 

use does not necessarily have to be zero when temperature and rainfall become zero. The 

minimum winter use needs to be estimated by substituting the correct temperature and rainfall 

values in the estimated regression equation.  
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Table 7.2 Panel linear regression results  

Location/City Sample 

size 

Regression on irrigation requirements Regression on temperature and rainfall 

Intercept Irrigation 

requirement 

coefficient 

R2 Intercept Temperature 

coefficient 

Rainfall coefficient R2 

Boulder 99 0.713 ± 0.061*** 0.597 ± 0.018*** 0.472 0.679 ± 0.077*** 0.083 ± 0.003*** -0.214 ± 0.031*** 0.445 

Denver 100 0.643 ± 0.110*** 2.289 ± 0.112*** 0.425 0.724 ± 0.165*** 0.115 ± 0.006*** -0.266 ± 0.143*** 0.386 

Eugene 93 0.764 ± 0.060*** 0.316 ± 0.013*** 0.348 0.071 ± 0.109 0.090 ± 0.006*** 0.003 ± 0.009 0.322 

Las Virgenes 42 0.833 ± 0.205*** 0.344 ± 0.025*** 0.386 0.391 ± 0.402 0.110 ± 0.017*** 0.257 ± 0.049*** 0.394 

Lompoc 100 0.821 ± 0.077*** 0.585 ± 0.028*** 0.263 -0.802 ± 0.209*** 0.145 ± 0.012*** -0.023 ± 0.016 0.267 

Phoenix 60 0.975 ± 0.147*** 0.294 ± 0.021*** 0.214 0.611 ± 0.164*** 0.062 ± 0.004*** -0.202 ± 0.062** 0.219 

San Diego 83 0.786 ± 0.117*** 0.238 ± 0.016*** 0.182 0.696 ± 0.172*** 0.053 ± 0.007*** -0.142 ± 0.020*** 0.193 

Scottsdale 53 0.786 ± 0.107*** 0.118 ± 0.009*** 0.193 0.597 ± 0.117*** 0.034 ± 0.003*** -0.192 ± 0.052*** 0.183 

Seattle 73 0.637 ± 0.039*** 0.181 ± 0.133*** 0.194 0.342 ± 0.098*** 0.031 ± 0.005*** 0.011 ± 0.123 0.148 

Tampa 78 0.672 ± 0.075*** 0.085 ± 0.016*** 0.063 0.697 ± 0.109*** 0.012 ± 0.005* -0.025 ± 0.009** 0.029 

Walnut Valley 74 0.556 ± 0.115*** 0.812 ± 0.040*** 0.452 -0.324 ± 0.286 0.127 ± 0.012*** -0.103 ± 0.028*** 0.497 

Waterloo 79 0.664 ± 0.037*** 0.267 ± 0.052*** 0.056 0.754 ± 0.051*** 0.005 ± 0.001*** -0.030 ± 0.014* 0.040 

Note: * t value significant at 0.05 level, ** t value significant at 0.01 level and *** t value significant at 0.001 level 
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The average indoor water use was also estimated by implementing two alternative methods. 

Previous research has shown that the recorded water consumption in the minimum winter 

month (MWC) could be used as an estimate of the indoor consumption (Gato et al., 2007; 

Maidment et al., 1985). End-use modelling could also be used to estimate indoor use as 

demonstrated by Mayer et al. (1999) and DeOreo et al. (2011). Indoor water consumption 

estimates based on the two approaches are presented in Table 7.3. The MWC estimates in 

Table 7.3 were calculated as the averages of the AMDD for the customer sample at each 

location. The end-use estimates were calculated from disaggregated indoor water use for the 

winter and summer logging periods extracted from the REUS database. The values presented 

in Table 7.3 are the daily indoor water use averaged for each group of customers.  

Mayer et al. (1999) consider the indoor water use estimates from end-use data to be more 

accurate than MWC estimates. As discussed earlier, the regression model intercepts also give 

an estimate of the indoor use. Overall, the MWC approach did not give superior indoor water 

use estimates than the regression model intercept. The indoor water use estimates from the 

regression model were generally reasonable with respect to the end-use estimates. 

Table 7.3 Average indoor water use estimated from end-use data and from the minimum 
winter use approaches  

Location 

Sample 

size 

End-use estimate 

(kL/day) 

MWC estimate 

(kL/day) 

Boulder 99 0.575 ± 0.029 0.523 ± 0.029 

Denver 100 0.664 ± 0.043 0.806 ± 0.046 

Eugene 93 0.675 ± 0.038 0.669 ± 0.032 

Las Virgenes 42 0.700 ± 0.055 1.100 ± 0.134 

Lompoc 100 0.664 ± 0.043 0.913 ± 0.062 

Phoenix 60 0.764 ± 0.045 1.364 ± 0.099 

San Diego 83 0.562 ± 0.030 0.978 ± 0.076 

Scottsdale 53 0.588 ± 0.057 1.011 ± 0.079 

Seattle 73 0.568 ± 0.035 0.650 ± 0.044 

Tampa 78 0.609 ± 0.040 0.743 ± 0.056 

Walnut Valley 74 0.798 ± 0.048 1.035 ± 0.059 

Waterloo 79 0.759 ± 0.040 0.668 ± 0.048 

 

CONCLUSION 

This study has shown that temperature and rainfall can be converted to irrigation requirements 

by applying localised soil and plant parameter values. Two main criteria were used to select 
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appropriate parameters values. First the number of irrigation events determined by water 

balance calculations for the peak summer month and the month of minimum winter use were 

matched with the average of the reported frequency of landscape irrigation. Secondly, 

parameter values were selected that generated net monthly irrigation requirements with the 

highest R2 value in the water use regression model. Comparison with regression on 

temperature and rainfall showed that the transformation of the climate variables to irrigation 

requirements, using a suitable set of parameter values, improved the performance of the water 

use regression models. Regression modelling was applied in this study, but a similar search 

for best fitting parameters could be extended to a more dynamic water use model, which would 

allow the outdoor water use process to be represented with greater flexibility. A sufficiently 

long water use dataset (say 2 years) would be required at a high temporal resolution (say 

every second day), typical in residential water end-use datasets. The precision could also 

improve with sufficient information about landscape characteristics and usage.  
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Chapter 8. General discussion 

In this chapter, the findings of the individual papers presented in the previous chapters are 

discussed. The focus is on describing the overall significance of this research study and 

pointing out the main limitations to the research.  

The work in the previous chapters present two main modelling techniques for estimating 

residential outdoor water use. The CIWU model described in Chapter 2 was based on end-

use modelling while the panel linear regression analysis presented in Chapter 6 utilised water 

billing records. Both approaches were formulated on the principle that landscape irrigation is 

the major contributor to residential outdoor water use. This assumption was reasonable for 

the case study site (Lilongwe, Malawi) because other prominent outdoor water uses, like 

swimming pools, are relatively uncommon.  

A straightforward approach to apply the CIWU model is to use typical parameter values 

available in literature for the vegetation types being considered. In work related to this 

research, Fuamba et al. (2016) implemented the CIWU model to leafy vegetables. Predicted 

changes for several future time horizons and greenhouse gas emission scenarios were 

reported. According to their analysis, temperature would rise by about 1C by 2039 under 

RCP8.5 and induce a rise of 5% in water use for leafy vegetables in the Hermanus area in 

South Africa. It was possible to replicate this analysis for the case of Lilongwe (Malawi) by 

applying the climate change projections in Chapter 6 of this thesis. The ensemble climate 

projection for 2050 indicated a temperature rise of about 1.2C that would cause a 3% increase 

in water use for leafy vegetables. Thus, the impact of warming on garden water use seems to 

depend on the regional climatic conditions. This approach assumes that the end-user waters 

the garden plants according to the theoretical irrigation requirement.   

The analysis presented in Chapter 4 demonstrated a procedure that could be used to calibrate 

the CIWU model. The CIWU model was fitted to actual measured daily water use for leafy 

vegetables. The model parameter values were systematically adjusted and tested to identify 

a suitable combination that closely fitted the observed water use. This step can be used to 

determine realistic parameter values for each irrigation water end-use type in the study home 

or area that would be applicable in a broad scale implementation of the CIWU modelling 

approach.  

The lack of a comprehensive end-use dataset prevented the full-scale implementation of the 

CIWU modelling approach as proposed in Chapter 2 to a case study site. The application of 

the model required information on vegetated areas maintained around the home, which could 
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be derived easily from a survey conducted during the field data collection. It was also 

necessary to collect household level daily irrigation water use records over a sufficiently long 

period for calibration.  

The application of sound recording did not fully resolve the need for a comprehensive water 

end-use dataset to apply in the proposed CIWU model. The detection of events at the outdoor 

tap was satisfactory in terms of event start time and duration. Earlier work examined the 

feasibility of predicting flow rate from the outdoor tap flow sound (Jacobs et al. 2015). The 

authors managed to correlate the sound signal and flowrate at the tap but the precision was 

too low for the technique to be adopted directly in this work to estimate flow rate and thus 

garden irrigation. As discussed in chapter 3, the recorded events also contained significant 

usage attributable to indoor activities but carried out at the outdoor tap (e.g., the washing of 

clothes in a basin at the outdoor tap). Despite these short-comings, the successful application 

of sound recording to detect outdoor tap use events was itself a notable achievement. 

Considering that developing countries are faced with limited data, extracting the start and end 

times of events allows for improved estimates of end-use volume to be made based on event 

volume, with flow rate assumed or measured. The result would notably improve the current 

state of affairs.   

The case studies presented in Chapters 5 and 6 present estimates of outdoor water use from 

monthly water billing records. Water billing records usually comprise metered consumption 

per customer collected and archived by water utilities. Although there is only one water use 

measurement per household in a month or bi-monthly period, the available records normally 

extend over several seasons or years. This rich and readily available data would allow the 

application of the regression modelling approach described in Chapter 6 to other cities with 

monthly water use records.  

The application of irrigation requirements in the water use regression model was unique to 

this research. The Lilongwe water use dataset provided little evidence of the advantage of 

using irrigation requirements in regression over the use of temperature and rainfall. There was 

a need to test the performance of this adapted approach under different weather conditions. 

Chapter 7 was added to address this shortcoming. The 12 study locations included in the 1999 

REUS database provided the desired variety in weather and illustrated the application of the 

regression model to another region beyond Africa. The application of theoretical irrigation 

requirements makes the model easier to interpret because the observed household water use 

when irrigation requirement is equal to zero approximates to indoor use. The use of irrigation 

requirements therefore offers an advantage over regression on temperature and rainfall 
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applied in similar studies. The disaggregated end-use data contained in the REUS database 

for each study location was vital for verifying the accuracy of the regression intercept as an 

estimate for indoor use. 

The two approaches for modelling water use applied in this study are complementary. 

Regression modelling with climate inputs is appropriate for estimating weather driven water 

use of blocks of customers but lacks the necessary detail for pinpointing the exact contributors 

to the observed usage. The application of end-use modelling is more appropriate for 

application to specific target end-uses. Regression modelling can provide estimates of the 

potential savings at the beginning of an outdoor water conservation programme. The analysis 

of the contribution of specific outdoor water end-uses can be performed using the CIWU 

model. The CIWU model is helpful for planning the water conservation measures targeted at 

specific outdoor end uses. The end-use approach can also be used at planning phases when 

no measurements can be made. Either approach can be used for climate impact assessment 

as long as the baseline conditions are properly captured in the estimated model.  

The models presented in this research have been formulated based on present water 

management practices. Residential irrigation water use habits could change significantly in 

the future due to factors such as technological, economic and social development. In view of 

potential future water supply challenges, urban planning and design is increasingly adopting 

water sensitive urban design (WSUD) concepts to maximise the beneficial effects of the 

hydrological cycle. Implementing WSUD involves the introduction of soil and water 

conservation practices such as rainwater harvesting tanks, rain gardens, water reuse and the 

like. The models presented in this research could, therefore, require modifications to suit future 

conditions. A detailed study of how residential irrigation water use would be affected by WSUD 

or other future developments was beyond the scope of this research. 
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Chapter 9. Conclusion 

9.1 Summary of findings and conclusions 

This study included a comprehensive review of outdoor water end-use modelling and key 

concepts relating to projection of future climate. End-use modelling is suitable for planning and 

implementing bottom-up water demand management measures as a supplement to the usual 

top-down approaches. There is a limited application of outdoor water end-use modelling 

compared to indoor water end-use modelling. One reason is that available residential water 

end-use datasets mostly cover periods that are too short for comprehensive outdoor water 

use modelling. 

This study modified the existing REUM outdoor component to incorporate parameters for 

assessing impacts of climate change. The FAO Penman Monteith equation was incorporated 

for estimating evapotranspiration and the soil water balance equation for estimating effective 

rainfall. The resulting CIWU modelling approach allowed the direct input of temperature and 

rainfall records, which are the main outputs of global climate models. 

The CIWU modelling approach was applied in related work to the case of leafy vegetables 

using a combination of typical parameter values. Leafy vegetables grown in backyard garden 

are a vital food supplement for many households in urban areas in Malawi. Since water users 

do not necessarily water their gardens according to the irrigation requirement under standard 

conditions, a separate analysis was performed to fit the predictions to observed water use 

through application of appropriate parameter values. An exhaustive search procedure was 

used to identify parameter values of best fit. The unique characteristic of the model was that 

the choice of suitable parameter values reproduced irrigation end-use events in terms of both 

the volume and frequency of water application. This later approach provides more realistic 

estimates from the CIWU model.   

Outdoor water use was also investigated using sound recording at the outdoor tap at 10 study 

homes in Lilongwe. The use of sound recording provided a relatively cheaper technique for 

detecting outdoor water use events than other available technologies. The results showed that 

sound recording can be used to characterise water use events at the outdoor tap in terms of 

duration and time of occurrence. Application of an automatic algorithm showed that the tap 

use events could be detected at precision and recall rates of at least 80%. It was also observed 

that several activities normally carried out indoors were also performed at the outdoor taps, 

for example, washing of clothes. 
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A broad-scale study was also conducted to examine the influence of climatic factors on water 

use for selected neighbourhoods in the city of Lilongwe. The average monthly daily demand 

increased with plot size in line with similar research in southern Africa. Seasonal variation in 

water use accounted for about 24% of total annual water use. The maximum monthly water 

use in summer was 1.2 times higher than the annual average for the smallest plots size 

category of 0 - 500 m2 and this factor increased to about 1.6 times the annual average for 

plots larger than 2,500 m2. These relatively high seasonal peaks suggested considerable 

outdoor water use.  

A panel linear regression model was fitted between water use and the independent variables 

plot size and the theoretical irrigation requirements derived for the period of study. In order to 

assess the impacts of climate change on water use, ensemble averages of projected baseline 

and future temperature and rainfall time series were transformed into theoretical irrigation 

requirements prior to input in the estimated regression model. The predicted changes in 

annual water use for the year 2050 were 1.5% and 2.3% under the low and high emissions 

scenarios respectively. The end of summer, which also marks the beginning of the rainy 

season, was noted to be the most critical period for water supply in the Southern African case 

study site (Lilongwe, Malawi). This period showed the highest rise in predicted water use due 

to both higher temperatures and reduced rainfall. This is also the period of the year when river 

flows are at a minimum. 

The case study in Chapter 7 was conducted to compare the performance of temperature and 

rainfall as independent variables in water use regression models with the alternative use of 

theoretical irrigation requirements. The choice of the appropriate soil and plant parameter 

values for transforming temperature and rainfall to irrigation requirements were obtained 

through an exhaustive search. The results showed that the transformation of temperature and 

rainfall to irrigation requirements, using a suitable set of parameter values, improved the 

performance of the water use regression models.  

9.2 Recommendations for further research 

The application of sound recording has been limited to the detection of event duration and 

time of occurrence. The method is not yet fully developed to estimate the flow rate and thus 

the amount of water use on outdoor fixtures. Further research is needed on estimation of flow 

rate from the recorded sound signals. Other reported research reviewed in this study suggest 

different approaches for estimating flowrate from sound signals. Better results are likely to be 

achieved by using a combination of techniques that address the different flow conditions, for 

example combining vibration and/or sound and/or temperature sensing.  
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The CIWU modelling approach was not tested on a larger scale such a neighbourhood due to 

lack of a comprehensive outdoor water use dataset. As smart meters become commonplace, 

sufficient irrigation water use data may be become available for a thorough application of the 

CIWU model. Stochastic simulation modelling is another potential area for application of 

residential outdoor water end-use modelling. The inputs of the outdoor end-use model are not 

fixed but vary for different outdoor end-uses. Stochastic modelling may account for the degree 

of unpredictability in the outdoor water use estimates. 

9.3 Summary of contributions 

The model of outdoor irrigation water end use presented in this study provides a means of 

simulating both the irrigation water use for a fixture and the frequency of application. The 

application of conceptual models for estimating outdoor water use is not new, but the 

adaptations made to allow for climate change and the calibration approach presented increase 

the versatility of the model to represent domestic irrigation water use.  

 

The combined application of panel linear analysis, plot size and weather data in a water use 

regression is unique to this research. This method worked reasonably well and represented 

customer water use reasonably well. Since the model uses data that is readily available to 

utilities, it is easy to replicate the methodology presented. In addition, the approach is suitable 

to developing countries with limited data when compared to comprehensive end-use studies 

abroad.  

 

Several studies have explored the potential for using sound in fluid flow applications. However, 

the application of sound recording and automated event detection for characterising outdoor 

water use events has not been presented before. Although no accurate method has yet been 

developed to estimate flow rate from recorded sound, the technique presented in this study 

was useful for identifying end-use event start and end times (thus duration) and it is relatively 

inexpensive.  
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